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Abstract

With the advent of automatic vectorization tools (e.g., JAX’s vmap), writing
multi-chain MCMC algorithms is often now as simple as invoking those tools on
single-chain code. Whilst convenient, for various MCMC algorithms this results in
a synchronization problem—loosely speaking, at each iteration all chains running
in parallel must wait until the last chain has finished drawing its sample. In this
work, we show how to design single-chain MCMC algorithms in a way that avoids
synchronization overheads when vectorizing with tools like vmap, by using the
framework of finite state machines (FSMs). Using a simplified model, we derive
an exact theoretical form of the obtainable speed-ups using our approach, and
use it to make principled recommendations for optimal algorithm design. We
implement several popular MCMC algorithms as FSMs, including Elliptical Slice
Sampling, HMC-NUTS, and Delayed Rejection, demonstrating speed-ups of up
to an order of magnitude in experiments.

1 Introduction

Automatic vectorization is the act of transforming one function into another that can
handle batches of inputs without user intervention. Implementations of automatic
vectorization algorithms—such as JAX’s vmap—are now available in many mainstream
scientific computing libraries, and have dramatically simplified the task of running
multiple instances of a single algorithm concurrently. They are routinely used to train
neural networks (Flax, 2023) and in other scientific applications, e.g., Schoenholz and
Cubuk (2021); Oktay et al. (2023); Pfau et al. (2020).

This paper focuses on the use of automatic vectorization for Markov chain Monte Carlo
(MCMC) algorithms. Tools like vmap provide a convenient way to run multiple MCMC
chains in parallel: one can simply write single-chain MCMC code, and call vmap to turn
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it into vectorized, multi-chain code that can run in parallel on the same processor. Many
state-of-the-art MCMC libraries have consequently adopted machine learning frame-
works with automatic vectorizaton tools—such as JAX or TensorFlow—as their backend.

One limitation with automatic vectorization tools in modern frameworks is how they
handle control flow. Since all instructions must be executed in lock-step, if the algorithm
has a while loop all chains must wait until the last chain has finished its iterations. This
can lead to serious inefficiencies for MCMC algorithms that generate each sample using
variable-length while loops. Roughly speaking, if vectorization executes, say, 100 chains
in parallel, all but one finish after at most 10 steps, and the remaining chain runs for
1000 steps, then about 99% of the GPU capacity assigned to vmap is wasted (and our
simulations show that the effect can indeed be this drastic). For the No-U-Turn Sampler
(HMC-NUTS) (Hoffman et al., 2014), this problem is well-documented (BlackJax, 2019;
Sountsov et al., 2024; Radul et al., 2020). However this also affects various other
algorithms, such as variants of slice sampling (Neal, 2003; Murray et al., 2010; Cabezas
and Nemeth, 2023), delayed rejection methods (Mira et al., 2001; Modi et al., 2024)
and unbiased Gibbs sampling (Qiu et al., 2019).

In this work, we show how to transform MCMC algorithms into an equivalent sampling
algorithm that avoids these synchronization barriers when using vmap-style vectorization.
In particular,

1. We develop a novel approach to transform MCMC algorithms into finite state
machines (FSMs), that can avoid synchronisation barriers when vectorizing with
tools like vmap.

2. We analyze the time complexity of our FSMs against standard MCMC imple-
mentations and derive a theoretical bound on the speed-up under a simplified
model.

3. We use our analysis to develop principled recommendations for optimal FSM
design, which enable us to nearly obtain the theoretical bound in speed-ups for
certain MCMC algorithms.

4. We implement several popular MCMC algorithms as FSMs, including Elliptical
Slice Sampling, HMC-NUTS, and Delayed-Rejection MH - demonstrating speed-
ups of up to an order of magnitude in experiments.

2 Background and Problem Setup

In this section, we briefly review how MCMC algorithms are vectorized, explain the
synchronization problems that can arise, and formalize the problem mathematically.
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2.1 MCMC Algorithms and Vectorization
MCMC methods aim to draw samples from a target distribution π (typically on a
subset of Rd) which is challenging to sample from directly. To do so, they generate
samples {x1, ..., xn} ∈ Rd×n from a Markov chain with transition kernel P and invariant
distribution π, by starting from an initial state x0 ∈ Rd and iteratively sampling
xi+1 ∼ P (·|xi). For aperiodic and irreducible Markov chains, as n→∞ the samples
will converge in distribution to π (Brooks et al., 2011). In practice, P is implemented
by a deterministic function sample, which takes in the current state xi and a pseudo-
random state ri ∈ N, and returns new states xi+1 and ri+1. This procedure is given in
Algorithm 1.

Algorithm 1 MCMC algorithm with sample function
1: Inputs: sample x0, seed r0
2: for i ∈ {1, ..., n} do
3: generate xi, ri ← sample(xi−1, ri−1)
4: end for
5: return x1, . . . , xn

Practitioners commonly run Algorithm 1 on m different initializations, producing m
chains of samples. Given an implementation of sample: Rd × N→ Rd × N, one way to
do this is to use an automatic vectorization tool like JAX’s vmap1. vmap takes sample
as an input and returns a new program, vmap(sample): Rd×m × Nm → Rd×m × Nm,
which operates on a batch of inputs collected into tensors

x̃i−1 := (xi−1,1, . . . , xi−1,m) ∈ Rd×m

r̃i−1 := (ri−1,1, . . . , ri−1,m) ∈ Nm

and returns the corresponding outputs from sample. One can therefore turn Algorithm 1
into a multi-chain algorithm by simply replacing sample with vmap(sample) and
replacing (x0, r0) by (x̃0, r̃0) (see Algorithm 6 in Appendix B). Under the hood, vmap
transforms every instruction in sample (e.g., a dot product) into a corresponding
instruction operating on a batch of inputs (e.g., matrix-vector multiplication); that is,
it ‘vectorizes’ sample. These instructions are executed in lock-step across all chains.
Using vmap usually yields code that performs as well as manually-batched code. For
this reason, as well as its simplicity and composability with other transformations like
grad (for automatic differentiation) and jit (for Just-In-Time compilation), vmap has
been adopted by major MCMC libraries such as NumPyro and BlackJAX.

1We use JAX and its vectorization map vmap throughout, since this framework is widely adopted.
Similar constructs exist in TensorFlow (vectorized_map) and PyTorch (vmap).
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2.2 Synchronization Problems with While Loops
Control flow (i.e., if/else, while, for, etc.) poses a challenge for vectorization, be-
cause different batch members may require a different sequence of instructions. vmap
solves this by executing all instructions for all batch members, and masking out the
irrelevant computations. A consequence of this is that if sample contains a while
loop, then vmap(sample) will execute the body of this loop for all chains until all
termination conditions are met. Until then, no further instruction can be executed.
As a result, if there is high variation in the number of loop iterations across chains,
running Algorithm 1 with vmap(sample) introduces a synchronization barrier across
all chains: at every iteration, each chain has to wait for the slowest sample call.

This issue arises in practice, because a number of important MCMC algorithms have
while loops in their sample implementations: such as variants of slice sampling (Neal,
2003; Murray et al., 2010; Cabezas and Nemeth, 2023), delayed rejection methods (Mira
et al., 2001; Modi et al., 2024), the No-U-Turn sampler (Hoffman et al., 2014), and
unbiased Gibbs sampling (Qiu et al., 2019).

Formalizing The Problem. Here we formalize the problem through a series of short
derivations. These will be made precise in Section 4. Suppose we run a vmap’ed version
of Algorithm 1 using a sample function that has a while loop. Let Ni,j denote the
number of iterations required by the jth chain to obtain its ith sample. If the while loop
has a variable length, Ni,j is a random number. Due to the synchronization problem
described above, the time taken to run vmap(sample) at iteration i is approximately
proportional to the largest Ni,j out of the m chains, maxj≤m Ni,j. The total runtime
after n samples, C0(n), is then approximately proportional to,

C0(n) ∝∼
n∑

i=1
max
j≤m

Ni,j (1)

By contrast, if the chains could be run without any synchronization barriers, the time
taken would instead be

C∗(n) ∝∼ max
j≤m

n∑
i=1

Ni,j (2)

The key difference is that the maximum is now outside the sum. This reflects the fact
that when running independently, we only have to wait at the end for the slowest chain
to collect its n samples, rather than waiting at every iteration. Clearly C∗(n) ≤ C0(n).
Significant speed-ups are obtainable by de-synchronizing the chains when C∗(n)≪ C0(n).
If each Ni,j converges in distribution to some PN as we draw more samples and an
appropriate law of large numbers holds, we can expect for large enough n that:

C0(n) ∝∼ nEmax
j≤m

N∞,j (3)

C∗(n) ∝∼ max
j≤m

nEN∞,j = nEN∞,1 (4)
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Figure 1: Statistics on the elliptical slice sampler for Gaussian Process Regression on
the Real Estate Dataset (Yeh, 2018). LHS: histogram of the number of slice shrinks per
sample. RHS: smoothed histogram of the average number of slice shrinks per sample
across m = 1024 chains, after n ∈ {100, 1000, 10000} samples.

where (N∞,1, ..., N∞,m) iid∼ PN . Therefore, de-synchronizing the chains should lead to
large speedups if

Emax
j≤m

N∞,j ≫ EN∞,1 (5)

In this work, we will see that Equation (5) holds in various situations.

Example. Consider the elliptical slice sampling algorithm (Murray et al., 2010)
which samples from distributions which admit a density with Gaussian components,
p(x) ∝ f(x)N (x|0, Σ). Its transition kernel (see Algorithm 8 in Appendix B) draws
each sample by (i) generating a random ellipse of permitted moves and an initial
proposal, and (ii) iteratively shrinking the set of permitted moves and resampling the
proposal from this set until it exceeds a log-likelihood threshold. The second stage uses
a while loop which requires a random number of iterations.
On Figure 1 we display results when implementing this algorithm in JAX to sample
from the hyperparameter posterior of a Gaussian process implemented on a regression
task using a real dataset from the UCI repository (details are in Section 7). On the LHS
we can see the distribution of the number of while loop iterations (i.e. slice shrinks)
needed to generate a sample. While the average is ∼6, the average of the maximum
across 1024 chains is >18, which implies Emaxj≤1024 Nn,j ≈ 3ENn,1. On the RHS, we
can see that the differences across the chains do balance out as more samples are drawn,
which suggests a certain law of large numbers does hold here. In particular, after just
100 samples the distribution of the average number of iterations per chain is contained
in the interval [5, 8], and after 10,000 samples this shrinks to [6.2, 6.4]. This implies
that if we could vectorize the algorithm without incurring synchronization barriers, we
could improve the Effective Sample Size per Second (ESS/Sec) by up to 3-fold. We will
see that for other algorithms (e.g., HMC-NUTS and delayed rejection) the potential
speed-ups are much larger than this.
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3 Finite State Machines for MCMC

In this section we present an implementation approach for MCMC algorithms with
a given sample function, which avoids the above synchronization problems when
vectorizing with vmap. The basic idea is to break down sample into a series of smaller
‘steps’ which avoid using iterative control flow like while loops and have minimal variance
in execution time. We will then define a runtime procedure that allows chains to progress
through their own step sequences in de-synchronized fashion. To do this in a principled
manner, we use the framework of finite state machines (FSMs). Formally, an FSM
is a 5-tuple (S,Z, δ,B,F), where S is a finite set of states, Z is a (finite) input set,
δ : S × Z → S is a transition function, B ∈ S is an initial state, and F is the set of
‘final’ states (Hopcroft et al., 2001). FSMs are useful tools which are typically used to
represent algorithms that run on machines with finite storage. Below we show how to
represent different sample functions as an FSM.

3.1 sample-to-FSM conversion
At a high-level, we construct the FSM of an MCMC algorithm as follows. The states
S = (S1, ..., SK) are chosen as functions which execute contiguous code blocks of the
algorithm. The boundaries of each code block are delineated by the start and end
of any while loops. For example, S1 executes all lines of code before the first while
loop, S2 executes all lines of code from the beginning of the first while loop body to
either the start of the next while loop or the end of the current while loop, and so on.
The inputs z ∈ Z are all variables taken as input to each code block. (e.g. current
sample x, proposal x′, log-likelihood log p(x))2, whilst the transition function δ selects
the next code block to run according to the relevant loop condition and the received
output z′ after executing the current block (e.g. if a while loop starts after the block
S1 executes, δ will check this loop’s condition using the output z′ = S1(z)). Below
we make this construction procedure more precise for three kinds of sample functions
which cover all MCMC algorithms considered in the present work: (i) functions with a
single while loop, (ii) functions with two sequential while loops, and (iii) functions with
two nested while loops. Additional details on the construction process are in Appendix B.

The single while loop case. The simplest case is a sample method with a single
while loop. This covers (for example) elliptical slice sampling (Murray et al., 2010) and
symmetric delayed rejection Metropolis-Hastings (Mira et al., 2001). In this case, we
break sample down into three code blocks B1, B2, B3 (one before the while loop, one for
the body of the while loop, and one after the while loop) and the termination condition
of the loop. This is shown on the LHS of Figure 2. Using these blocks, we define the
FSM as (S,Z, δ,B,F), where (1) Z is the set of possible values for the local variables
of sample (e.g., the current sample x, seed r, and proposal etc.), (2) S = {S1, S2, S3}

2Whilst we may have that (e.g.) the sample x ∈ Rd, which violates finiteness of Z, in practice an
MCMC algorithm works using a finite subset of Rd (e.g. 32-bit floating point precision).
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code block 1 =: S1

while . . . do {

code block 2 =: S2

} end while

code block 3 =: S3

S1

S2

S3

Figure 2: FSM of an MCMC algorithm with a single while loop.

is a set of three functions Z → Z, where for each k ∈ {1, 2, 3}, Sk(z) runs Bk on local
variables z and returns their updated value, (3) for each k ∈ {0, 1} and z ∈ Z, the
transition function δ(Sk, z) checks the while loop termination condition using z, and
returns S2 if False and S3 if True, (4) B = S1 and, finally, (5) F = S3. The RHS of
Figure 2 illustrates the resulting FSM diagram. Note there is an edge Sk → Sk̃ between
states if and only if δ(Sk, z) = Sk̃ for some z.

Two sequential while loops. We break down sample into two blocks: B1 contains
all the code up to the second while-loop. B2 contains the remaining code. In this case,
B1 and B2 are now single while-loop programs, and thus can both be represented by
FSMs F1 and F2 using the above rule. The FSM representation of sample can then
be obtained by “stitching together” F1 and F2. The full construction process is in
Appendix B. The resulting FSM is provided for the case of the Slice Sampler (Figure 3,
top-right panel), which contains two3 while loops—one for expanding the slice, and one
for contracting the slice.

Two nested while-loops In the case of two nested while loops, we break down sample
into B1, B2, B3, where B1 (resp. B3) is the code before (resp. after) the outer while
loop and B2 is the outer while-loop body. As B2 is a single-while loop program, it
admits its own FSM Fi. Building the final FSM of sample then informally consists
in obtaining a first, “coarse” FSM by treating B2 as opaque, and then refining it by
replacing B2 with its own FSM. The full construction process is given in Appendix B.
The resulting FSM is provided for the case of NUTS (Figure 3, bottom-right panel),
which—in its iterative form—uses the outer while loop to determine whether to keep
expanding a Hamiltonian trajectory, and the inner while loop to determine whether to
keep integrating along the current trajectory.

3We note that for 1D problems, the slice expansion loop can be broken into two loops—one for the
upper bound of the interval, and one for the lower bound.

7



S1

init

S2

propose

S3

done
Delayed Rejection MH

S1 S2 S3

init shrink done

Elliptical Slice Sampling

S1 S2 S3 S4 S5

init e expand init s shrink done
Slice Sampling

S1 S2 S3 S4 S5

init double integrate check done

HMC-NUTS

Figure 3: Finite state machines for the sample function of different MCMC algorithms:
The symmetric delayed-rejection Metropolis-Hastings algorithm (Mira et al., 2001),
elliptical slice sampling (Murray et al., 2010), (vanilla) slice sampling (with single slice
expansion loop) (Neal, 2003), the No-U-Turn sampler for Hamiltonian Monte Carlo
(Hoffman et al., 2014).

3.2 Defining the FSM runtime
Going forward, for convenience we assume the transition function δ takes in and returns
the label k of each block Sk, rather than Sk itself. Now, given a constructed FSM, in
Algorithm 2 we define a function step(k,z) which when executed performs a single
transition along an edge in the FSM graph. For reasons that will be clear shortly, we
augment this function with a flag that indicates when the final block is run.

Algorithm 2 step function for FSM
Inputs: algorithm state k, variables z

1: set isSample← 1{k = K}
2: z ← switch(k, [{run S1(z)}, ..., {run SK(z)}])
3: k ← switch(k, [{run δ(1, z)}, ..., {run δ(K, z)}])
4: return (k, z, isSample)

Note that if we start from some input (k, z) = (0, z0), by calling step repeatedly we
will transition through a sequence of blocks of sample, until we eventually reach the
terminal state, at which point a sample is obtained (as indicated by isSample=True).
We can use this function to draw n samples, by (1) adding a transition from the terminal
state F = SK back to the initial state B = S0, and (2) defining a wrapper function
which iteratively calls step until isSample=True is obtained n-times (see Algorithm 3).
Both Algorithm 3 and Algorithm 1 draw n samples from sample and can be easily
vectorized with vmap. In the case of Algorithm 3, we just call vmap on step and
modify the outer loop to terminate when all chains have collected n samples each (see
Algorithm 7 in Appendix B). The crucial difference is that: (i) by changing the definition
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Algorithm 3 FSM MCMC algorithm
1: input: initial value x0, # samples n
2: initialize: z = init(x0), X = list(), B = list()
3: Set t = 0 and k = 0
4: while t < n do
5: (k, z, isSample)← step(k, z)
6: append current sample value x stored in z to X
7: append isSample to B
8: update sample counter t← t + isSample
9: end while

10: return X[B]

of a ‘step’ to allow different chains to execute different code blocks, Algorithm 3 enables
them to progress their own independent block sequences, and (ii) by essentially moving
the while loop to the outer layer, Algorithm 3 only requires the chains to re-synchronize
after n samples.

4 Time Complexity Analysis of FSM-MCMC

One limitation with our FSM design is the step function relies on a switch to determine
which block to run. When vectorized with vmap or an equivalent transformation, all
branches are evaluated for all chains, with irrelevant results discarded. This means
the cost of a single call of step is the cost of running all state functions S1, ..., SK . To
obtain a speedup, the FSM must therefore sufficiently decrease the expected number
of steps to obtain n samples from each chain. In this section we quantitatively derive
conditions under which this occurs in the simplified setting of an MCMC algorithm
with a single while loop. This enables us to subequently optimize the design of the
FSM in Section 5.

To this end, consider a sample function with a single while loop, and associated FSM with
K states, where Sk (for some k ∈ [K]) executes the body of this loop. Note our approach
yields K ≤ 3 when there is one while loop, but we relax this here to analyze the effect
of the number of blocks on performance. We assume the cost of executing S1, .., SK is
c1(m), ...cK(m) respectively when using vectorized Algorithm 1 and α

∑K
k=1 ck(m) when

using vectorized Algorithm 3, where α ∈ [maxk∈[K] ck(m)/∑K
k=1 ck(m), 1]. The variable

α reflects the cost of using multiple branches in step, which is 1 using Algorithm 2,
but can be decreased by refining step, as we show later. The dependence of each cost
ci(m) on m reflects the ability of the GPU to efficiently parallelize a call to code-block
Si for m chains. Under these assumptions, the average cost per sample for m chains
after n samples each, is expressed for the standard design C0(n, m) and FSM design
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CF (n, m) as

C0(m, n) = A0(m) + B0(m) 1
n

n∑
i=1

max
j∈[m]

(Ni,j) (6)

CF (m, n) = AF (m) + BF (m) max
j∈[m]

(
1
n

n∑
i=1

Ni,j

)
(7)

Here A0(m) = c¬k(m) and AF (m) = α(K − 1)(c¬k(m) + ck(m)) are the costs of
calling all blocks except Sk (and c¬k(m) = ∑

j ̸=k cj(m)); B0(m) = ck(m) and BF (m) =
α(ck(m) + c¬k(m)) are the costs of running the iterative block Sk; and Ni,j is now
the number of calls of Sk needed to produce sample i for chain j (i.e. Xi,j)4. If the
joint sequence (Xi,j, Ni,j)i≥1 is a convergent Markov chain, we can state the following
concentration result, which formally justifies our derivations leading to (3) and (4).

Theorem 4.1. Let Ni,j ∈ [0, B], Xi,j ∈ X ⊂ Rd, (Xi,j, Ni,j)i≥1 be a Markov Chain with
stationary distribution π. Then with probability 1− δ we have the inequalities

|C0(m, n)− A0(m)−B0(m)Eπ max
j∈[m]

Nj| ≤ MB0(m)n− 1
2 ln(2/δ) (8)

|CF (m, n)− AF (m)−BF (m)EπN1| ≤ MBF (m)n− 1
2 ln(2m/δ) (9)

Where (N1, .., Nm) iid∼ πN and M > 0.

The result essentially says that as n→∞, the cost per sample of the standard MCMC
design will converge to the expected time for the slowest chain to draw a sample (i.e.
A0(m)−B0(m)Eπ maxj∈[m] Nj), whilst the FSM design will converge to the expected
time for a single chain to draw a sample, scaled by an additional cost of control-flow in
step (i.e. AF (m)−BF (m)EπN1|). Both convergence rates are O(n− 1

2 ).
Remark 4.2. The Markov chain assumption is satisfied whenever Ni,j depends (only)
on the geometry of the distribution at Xi−1,j. Its convergence can be induced by
irreducibility and aperiodicity, which we expect will typically hold under irreducibility
and aperiodicity of the marginal Markov chain (Xi,j)i>1.

4.1 The long-run relative cost of the FSM
Substituting the form of the constants into Theorem 4.1, the ratio of the long-run
expected runtimes, E(m), is given by the ratio

E(m) = c¬k(m) + ck(m)Emaxj∈[m] Nj

α(c¬k(m) + ck(m))(K − 1 + EN1)
(10)

4We use capital letters here as our analysis in this section treats the samples as random variables.
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Figure 4: R(m) = Emaxj∈[m] Nj

EM1
for different distributions with skewness γ1 ≈ 1 (LHS)

and γ1 ≈ 10 (RHS).

In Proposition A.2 in Appendix A we prove that:

E(m) ≤ R(m) := Emaxj∈[m] Nj

EN1
(11)

and that this bound is tight. We refer to R(m) as the ‘theoretical efficiency bound’ for
the FSM. Note from Equation (10) that minimizing α and K improves the efficiency
E(m) of the FSM. In Section 5 we will introduce two techniques to minimize α and
K in practice, which enable us to nearly obtain the efficiency bound R(m) for certain
MCMC algorithms.

The scale of potential speed-ups. The size of R(m) depends (only) on the underlying
distribution of N1 (since Ni =d Nj ∀i, j ∈ [m]). Whenever N1 is sub-exponential, it is
known that R(m) = O(ln(m)) (Vershynin, 2018). Although this implies a slow rate
of increase in m, R(m) can be still be very large for small values of m. For example,
if Nj/B ∼ Bern(p) (i.e., one either needs zero or B iterations to get a sample), then
R(m) = (1− (1− p)m)/p and converges to 1/p exponentially fast as m increases. For
small p this can be very large even for small m. In general R(m) is sensitive to the
skewness of the distribution: distributions on [0, B] with zero skewness have R(m) = 2,
whilst distributions with skew of 10 can have R(m) ≈ 100; see Figure 4. Intuitively,
these are the distributions where chains are slow only occasionally, but at least one
chain is slow often. In such cases, our FSM-design can lead to enormous efficiency gains,
as we show in experiments.

5 Optimal FSM design for MCMC algorithms

In this section we provide two strategies to modify the function step to (effectively)
reduce α and K. These strategies enable us to develop MCMC implementations which
nearly obtain the theoretical bound R(m) in some experiments.
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5.1 Step bundling to reduce K

Given an FSM with step function step defined by code blocks S1, ..., SK and transition
function δ, one can ‘bundle’ multiple FSM steps together using a modified step function,
bundled_step, which replaces the switch over the algorithm state k in step with a
series of separate conditional statements. This is shown in Algorithm 4 for an example
with two state functions. Note that under the “run all branches and mask” behaviour of
vmap, vmap(step) and vmap(bundled_step) have the same cost. However, whenever
bundled_step runs S1 and δ returns k = 2, it immediately also runs S2. This essentially
reduces the ‘effective’ number of states K and/or reduces the overall number of steps
needed to recover a sample, increasing efficiency. In principle, the block ordering can
be optimized for sequences that are expected to occur with higher probability.

Algorithm 4 bundled_step for FSM with S1, S2
Inputs: algorithm state k, variables z

1: set isSample← 1{k = 2}
2: if k = 1 then
3: run block S1 with local variables z
4: update state k ← δ(1, z)
5: end if
6: if k = 2 then
7: run block S2 with local variables z
8: update state k ← δ(2, z)
9: end if

10: return (k, z, isSample)

5.2 Cost amortization
If a function g is called on a variable θ ∈ z inside multiple state functions, a single
call of vmap(step) (or vmap(bundled_step)) will compute g(θ) multiple times. To
prevent this, we propose: (1) augmenting step to return another flag doComputation
that indicates when this computation is needed in the next code block, and (2) defining
a new step function amortized_step around step which calls step once, and executes
g if doComputation=True. The resulting step function is shown in Algorithm 5. Note
that now g(θ) is only called once per step when using vmap on amortized_step, even
if it required for every code block Sk. This can extend to multiple functions g1, .., gl.
In practice, we find amortization most powerful for when the log-density is expensive
and needed in multiple state functions, in which case we can set g(·) = log p(·). The
elliptical slice sampler is one such case, where the log-pdf is needed in both S1 (i.e. the
block before the while loop - INIT in Figure 3) and S2 (i.e. the block for the body of
the while loop - SHRINK in Figure 3), to check the while loop terminator.
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Algorithm 5 amortized_step for FSM with function g

1: Input: Algorithm state k, variables z
2: (k, z, isSample, doComputation)← step(k, z)
3: if doComputation then
4: Unpack state (z′, θ) = z
5: Do computation θ ← g(z)
6: Re-pack state z ← (z′, θ)
7: end if
8: Return (k, z, isSample)

6 Related work

FSMs in Machine Learning. Previous work in machine learning has used the
framework of FSMs to design image-based neural networks (Ardakani et al., 2020) and
Bayesian non-parametric time series models (Ruiz et al., 2018), as well as extract repre-
sentations from Recurrent-Neural-Networks (RNNs) (Muškardin et al., 2022; Cechin
et al., 2003; Tiňo et al., 1998; Zeng et al., 1993; Koul et al., 2018; Svete and Cotterell,
2023). To our knowledge, our work is the first that use used FSMs as a framework to
represent MCMC algorithms, and design novel implementations.

Efficient MCMC on Modern Hardware. Given the recursive nature of HMC-NUTS,
previous work has reformulated the algorithm for compatibility with machine learning
frameworks that cannot naively support recursion (Abadi et al., 2016; Phan et al.,
2019; Lao et al., 2020). However, these implementations do not address synchronization
inefficiencies caused by automatic vectorization tools. Our work bears some similarities
with a general-purpose algorithm proposed in the High-Performance-Computing liter-
ature for executing batched recursive programs (Radul et al., 2020). However whilst
both their method and ours breaks programs down into smaller blocks for efficient
vectorization, there are several major differences. Our approach provides a recipe for
implementing a range of single-chain iterative MCMC algorithms and is fully compatible
with automatic vectorization tools like vmap. In contrast, their algorithm is designed to
work with recursive programs and requires code which is already batched. Crucially,
in order to avoid synchronization barriers due to while loops, this code cannot have
been batched with a vmap-equivalent vectorization tool, because vmap converts while
loops into a single batched primitive which cannot be broken down by their algorithm.
Additionally, our method breaks programs down into the coarsest (while-loop-free)
blocks possible and allows for control flow within each block, which we showed is crucial
for optimal performance in frameworks which run and mask branches. Their algorithm
does not allow blocks to contain any control-flow, yielding very small blocks. This can
be detrimental to performance under the default “run and mask” assumption made in
their work. By focusing on MCMC, we also obtain provable speed-ups under appropriate
statistical settings and FSM design.
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Figure 5: Mean and standard deviation walltimes (LHS) and ESS (RHS) of the
symmetric Delayed-Rejection Algorithm (Mira et al., 2001) using Algorithm 1 and
our FSM implementation Algorithm 3 (both with vmap), on a univariate Gaussian (10
random seeds). To test the effect of the number of states and step function bundling
on performance, FSM uses step with the while loop body (PROPOSE in Figure 3)
split into 4 states, whilst FSM-condensed uses bundled_step with the same states. By
bundling the steps together, we achieve a ∼ 3x efficiency gain.

7 Experiments

The following experiments evaluate FSM implementations of different MCMC algorithms
with while loops against their standard (non-FSM) implementations, as well as other
MCMC methods in one experiment. All methods (including ours) consist of single
chain MCMC algorithms written in JAX, turned into multi-chain methods with vmap,
and compiled using jit. All experiments are run in JAX on a NVIDIA A100 GPU
with 32GB CPU memory.

7.1 Delayed-Rejection MH on a Simple Gaussian
We first illustrate basic properties of the FSM conversion on a toy example. The MCMC
algorithm used is symmetric Delayed-Rejection Metropolis Hastings (DRMH) (Mira
et al., 2001), which is a simple example of a delayed rejection method. Symmetric DRMH
modifies the Random-Walk Metropolis-Hastings algorithm by iteratively re-centering
the proposal distribution on the rejected sample and resampling until either acceptance
occurs or a maximum number of tries M is reached. To ensure detailed balance hods,
the acceptance probability formula is adjusted at each step to account for past rejections.

Experimental setup. As a toy problem, we implement symmetric DRMH using
(vmap’ed) Algorithm 1 (baseline) and Algorithm 3 (ours) to sample from a univariate
Gaussian N (0, 1), varying the number of chains. We use a N (x, 0.1) proposal distri-
bution with M = 100 tries per sample and draw 10,000 samples per chain. Although
DRMH has 3 state functions by default (see Figure 3), the INIT and DONE states are
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Figure 6: Average results using 10 random seeds (standard deviations too small to
show) from drawing 10k posterior samples for the covariance hyperparameters (τ, θ, σ)
of a Gaussian Process Y (x) = f(x) + ϵ on the Real Estate UCI dataset (n = 411, d = 6).
Blue = BlackJAX elliptical slice, Red = FSM elliptical slice sampler (red). LHS: the
average number of sub-iterations (i.e., ellipse contractions) needed to draw a single
sample increases from 6 (1 chain) to 18 (1024 chains) for the standard implementation
due to synchronization barriers, but remains constant for our FSM. Middle two plots:
The FSM can run ∼3x faster by avoiding synchronization barriers, as shown by the
Walltime (left-middle) and ESS/S (right-middle). RHS: the ratio of average iterations
per sample (i.e. R(m)) (green) bounds the obtainable ‘efficiency gain’ using our FSM,
but is nearly obtained in relative walltime when amortizing log-pdf calls (red).

essentially empty, and so just a single state function can be used for the while loop
body. This means an appropriate FSM implementation should be able to get close to
R(m), up to overheads. To illustrate the importance of designing FSMs with as few
(effective) state functions as possible, we implement an FSM which unrolls the while
loop body into four different state functions, as well as a (condensed) FSM which uses
step function bundling to effectively use a single state.

Results. As the number of chains m increases, the FSM implementations increasingly
outperform the standard implementation (see Figure 5). This reflects the increasing
synchronization cost of waiting for the slowest chain. The speedups are near an order of
magnitude when m = 1024 for the condensed FSM. Bundling sees nearly a 3x efficiency
gain and enables no performance loss when m = 1 and there is no synchronization
barrier. Note Standard DR tracks the profile of the estimated E[maxj∈[m] N1,j], whilst
the FSMs track the profile of E[N1,j] (which is flat). This implies the condensed FSM
(i.e. with step bundling) has been able to approximately obtain R(m) up to a constant
factor.

7.2 Elliptical Slice Sampling on Real Estate Data
The elliptical slice sampler (introduced in the Example in Section 2.2) has a single
while loop, resulting in three state functions (see Figure 3). We compare BlackJAX’s
implementation to our FSM implementation.
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Figure 7: Left: contours of the first two dimensions of a correlated mixture of Gaussians,
along with a single chain of HMC-NUTS and MALA. Middle Left: Histogram of the
number of integration steps taken per sample for a single NUTS chain. Middle Right:
histogram of the maximum number of integration steps taken per sample across 500
chains. Right: Effective samples per minute for the standard BlackJAX HMC-NUTS
implementation, and our FSM implementation of HMC-NUTS (average and standard
error bars from 5 seeds). The FSM achieves speed ups of nearly an order of magnitude
for 100 chains, and or than half an order of magnitude for 500 chains.

Experimental setup. We apply the sampler to infer posteriors on covariance hy-
perparameters in Gaussian Process Regression, using the UCI repository Real Estate
Valuation dataset (Yeh, 2018). This dataset is comprised of n = 414 input and output
pairs Dn = {xi, yi}n

i=1, where yi is the house price of area i, and xi ∈ R6 are house price
predictors including house age, spatial co-ordinates, and number of nearby convenience
stores. We model y = f(x) + ϵ and assume ϵ ∼ N (0, σ2), f ∼ GP(0, k) with kernel
k(x, x′) = τ 2 exp(−λ2|x− x′∥2). We use Normal priors σ, τ, λ ∼ N (0, 1), (so the ellipse
is drawn using N (0, I)) and use the sampler to draw 10k samples per chain from the
posterior p(σ, τ, λ|Dn), for varying # chains m.

Results are shown in Figure 6. As expected, the BlackJAX implementation suffers
from synchronization barriers at every iteration due to using vmap with while loops:
its average number of iterations per sample increases roughly logarithmically from
6 (1 chain) to 18 (1024 chains), whereas the FSM implementation remains constant.
As a result, the FSM significantly improves walltime and ESS/second performance
(Figure 6/middle). For instance, when 1024 chains are used, the FSM reduces the
time to draw 10k samples per chain from over half an hour to about 10 minutes. The
efficiency gain can be measured by the ratio (BlackJAX/FSM) of wall-times (shown in
Figure 6/right). As expected, FSM efficiency increases with the number of chains. The
greatest efficiency gain occurs precisely where the best ESS/second can be obtained
via GPU parallelism. The analysis in Section 4 shows that the efficiency gain is upper-
bounded by the ratio of average # iterations per sample for both methods (i.e., R(m)).
This bound is almost achieved here by amortizing log-pdf calls. This is because (i)
roughly 80% of the time is spent in the iterative ‘SHRINK’ state, and (ii) log-pdf calls
dominate computational cost here, so amortizing them ensures the state function cost
is similar to the standard implementation. Since the log-pdf is needed in two states,
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not amortizing it results in two log-pdf calls per step, and so we lose roughly a factor 2
in relative performance (orange line in Figure 6). These results change with data set
size, which determines the cost of log-pdf calls (see Appendix B).

7.3 HMC-NUTS on a high-dimensional correlated MoG
The NUTS variant of Hamiltonian Monte Carlo (Hoffman et al., 2014) adaptively
chooses how many steps of Hamiltonian dynamics to simulate when drawing a sample,
by checking whether the trajectory has turned back on itself or has diverged due to nu-
merical error. Its iterative implementation in BlackJAX involves two nested while loops:
An outer loop that expands the proposal trajectory, and an inner loop that monitors for
U-turns and divergence. Converting these while loops into an FSM using our procedure
results in five states (Figure 3). We again compare BlackJAX’s implementation to our
own (using vmap for both methods).

Experimental setup. We implement NUTS on a 100-dimensional correlated mixture
of Gaussians (ρ = 0.99), with the mixture modes placed along the principal direction
at (−5 · 1, 0, 5 · 1). We use a pre-tuned step-size with acceptance rate ∼ 0.85 and set
M = I for the mass matrix. We draw n = 1000 samples per chain and vary # chains
m.

Results. The contours of the log-density and a trajectory of a single NUTS chain
(1000 samples) are displayed in Figure 7 (one dot = one sample). The typical distance
traveled by NUTS is small (few integration steps), with the occasional large jump
(many integration steps) when the momentum sample aligns with the principal direction.
The FSM yields speedups of nearly an order of magnitude for m = 100, and about
half an order of magnitude for m = 500. This is reflects the fact that the marginal
distribution of integration steps is very skewed (i.e. R(m) is large). As Figure 7 shows,
the probability a sample needs less than 20 steps is ∼ 0.95 and needs > 1000 steps is
∼ 0.01. However, the probability that at least one chain needs more than 1000 steps is
∼ 0.99. Note that one can avoid sychronization barriers and obtain very high ESS/Sec
using a simpler algorithm like MALA, but this fails to explore the distribution (LHS
Figure 7).

7.4 Transport Elliptical Slice Sampling for distributions with
challenging local geometry

Transport elliptical slice sampling (TESS), due to Cabezas and Nemeth (2023), is a
variant of elliptical slice sampling designed for certain challenging local geometries. It
essentially uses a normalizing flow T to ‘precondition’ the distribution π, and does
elliptical slice sampling on the transformed distribution T#π. Since T is learned to
approximately map π to N (0, I), the geometry of T#π makes it much easier to sample
from. Once these samples are obtained, they can be pushed through T −1 to recover
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Table 1: ESS/Second for different methods on the four benchmark problems used in
Cabezas and Nemeth (2023).

MEADS CHEES NeuTra TESS TESS-FSM

Predator Prey 1.53 nan 1.59 2.27 3.80
Google Stock 480.76 60.19 185.12 1116.31 2426.16
German Credit 141.50 198.99 186.17 58.95 59.04
BOD 64.846 247.02 130.59 2978.03 3252.64

samples from π. TESS achieves particularly good results on distributions with ‘funnel’
geometries, with which gradient-based methods like HMC tend to struggle (Gorinova
et al., 2020).

Experimental setup. TESS has similar overall structure as the elliptical slice sampler,
and conversion results in the same ‘single loop’ FSM in Figure 3. We compare TESS
with and without FSM conversion on the four benchmark sampling problems used in
Cabezas and Nemeth (2023), which are chosen for their challenging geometries. As
baselines we use two recently proposed adaptive HMC variants (MEADS (Hoffman and
Sountsov, 2022), and CHEES (Hoffman et al., 2021)) as well as NeuTra (Hoffman et al.,
2019), which uses a similar preconditioning strategy to TESS, but with HMC as the
sampling algorithm. For all methods, we run 128 chains of 1000 samples each, with
each algorithm’s hyperparameters pre-tuned using 400 warm-up steps.

Results. In all four cases, TESS-FSM improved ESS/second over TESS. In three these
cases TESS-FSM achieved the best ESS/second, and in two cases the speed-up over
TESS was roughly by an order of 2. Since all methods considered here are state-of-
the-art (SOTA) approaches to sampling from distributions with challenging geometries,
this demonstrates our FSM implementation method can be used to improve SOTA
performance on such tasks.

HD, PG and PO are supported by the Gatsby Charitable Foundation. This work was
partially supported by NSF OAC 2118201.
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A Mathematical appendix

A.1 Proof of Theorem 4.1
Proof. The result broadly follows from known Hoeffding bounds for Markov chains. For
clarity we restate the relevant result below5, using our notation and set-up.
Proposition A.1 (Hoeffding Bound for Markov Chains - Theorem 1 in Fan et al.
(2021)). Let (Zi)i≥1 be a Markov Chain with measurable state space Z and stationary
distribution π, and let f : Z → [0, B] be measurable and bounded. Then, for any ϵ > 0,

Pπ

(∣∣∣∣∣
n∑

i=1
f(Zi)− nEπf(Z1)

∣∣∣∣∣ ≥ ϵ

)
≤ 2 exp

(
−1− λ

1 + λ

2ϵ2

B2

)
(12)

where λ is the spectral gap of π (as defined in Fan et al. (2021)) which quantifies the
speed of convergence of the Markov chain towards π (Rudolf, 2011).
Now we are ready to prove our results. We start with C0(m, n). First, note that
since (Xi,j, Ni,j)i≥1 is a Markov chain with stationary distribution π for every chain j,
then ({Xi,j, Ni,j}m

j=1)i≥1 is also a Markov chain with stationary distribution πm := π ⊗
π⊗...⊗︸ ︷︷ ︸

m−1

π, because the chains are independent. Therefore, if we set Zi := {Xi,j, Ni,j}m
j=1

and f(Zi) := maxj∈[m](Ni,j) ∈ [0, B], we get by an application of Proposition A.1 that

Pπ

(∣∣∣∣∣
n∑

i=1
max
j∈[m]

(Ni,j)− nEπ max
j∈[m]

(N1,j)
∣∣∣∣∣ ≥ ϵ

)
≤ 2 exp

(
−1− λ

1 + λ

2ϵ2

nB2

)
(13)

Setting δ = 2 exp
(
−1−λ

1+λ
2ϵ2

nB2

)
and re-arranging, we get that with probability 1 − δ

(under the stationary distribution π),
∣∣∣∣∣

n∑
i=1

max
j∈[m]

(Ni,j)− nEπ max
j∈[m]

(N1,j)
∣∣∣∣∣ ≤ B

√√√√n(1 + λ)
2(1− λ) ln

(2
δ

)
(14)

Multiplying by B0(m) and dividing by n on both sides, and adding and subtracting
A0(m) from the LHS gives us the result for C0

5We note that Fan et al. (2021) only present a one-sided bound, but by standard symmetry
arguments this immediately implies the above two-sided bound.
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∣∣∣∣∣B0(m) 1
n

n∑
i=1

max
j∈[m]

(Ni,j)−B0(m)Eπ max
j∈[m]

(N1,j)
∣∣∣∣∣ ≤ B0(m)B

√√√√ (1 + λ)
2n(1− λ) ln

(2
δ

)
(15)∣∣∣∣∣B0(m) 1

n

n∑
i=1

max
j∈[m]

(Ni,j)± A0(m)−B0(m)Eπ max
j∈[m]

(N1,j)
∣∣∣∣∣ ≤ B0(m)B

√√√√ (1 + λ)
2n(1− λ) ln

(2
δ

)
(16)∣∣∣∣∣C0(m, n)− A0(m)−B0(m)Eπ max

j∈[m]
(N1,j)

∣∣∣∣∣ ≤ B0(m)B

√√√√ (1 + λ)
2n(1− λ) ln

(2
δ

)
(17)

Now we follow similar steps for CF (m, n). To start, we bound the distance from
maxj∈m

1
n

∑n
i=1 Ni,j and Eπ[N11] in terms of a sum of individual distances using the

union bound.

Pπ

(∣∣∣∣∣max
j∈m

1
n

n∑
i=1

Ni,j − EπN11

∣∣∣∣∣ ≥ ϵ

)
= Pπ

(
max
j∈m

1
n

n∑
i=1

Ni,j − EπN11 ≥ ϵ

)

+ Pπ

(
max
j∈m

1
n

n∑
i=1

Ni,j − EπN11 ≤ −ϵ

)
(18)

= Pπ

 m⋃
j=1

{
1
n

n∑
i=1

Ni,j − EπN11 ≥ ϵ

}
+ Pπ

 m⋃
j=1

{
1
n

n∑
i=1

Ni,j − EπN11 ≤ −ϵ

} (19)

≤
m∑

j=1

Pπ

(
1
n

n∑
i=1

Ni,j − EπN11 ≥ ϵ

)

+ Pπ

(
1
n

n∑
i=1

Ni,j − EπN11 ≤ −ϵ

) (20)

=
m∑

j=1
Pπ

(∣∣∣∣∣ 1n
n∑

i=1
Ni,j − EπN11

∣∣∣∣∣ ≥ ϵ

)
(21)

= mPπ

(∣∣∣∣∣ 1n
n∑

i=1
Ni,1 − EπN11

∣∣∣∣∣ ≥ ϵ

)
(22)

= mPπ

(∣∣∣∣∣
n∑

i=1
Ni,1 − nEπN11

∣∣∣∣∣ ≥ nϵ

)
(23)

Applying Proposition A.1 on the Markov Chain (X1,i, N1,i)i≥1 with f(X1,i, N1,i) =
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N1,i ∈ [0, B] and following the same steps as for C0(m, n), we similarly recover∣∣∣∣∣CF (m, n)− AF (m)−BF (m)Eπ max
j∈[m]

(N1,j)
∣∣∣∣∣ ≤ BF (m)B

√√√√ (1 + λ)
2n(1− λ) ln

(2m

δ

)
(24)

which is the result in the Theorem.
Proposition A.2. Fix m, K ∈ N\{0} and let PN be a probability measure on R+

strictly positive first moment. Suppose (i) N1, ..., Nm
iid∼ PN , (ii) c1(m), ..., cK(m) ≥ 0

and (iii) α ∈ [maxj∈[K] cj(m)/∑j∈[K] cj(m), 1]. Then, we have

E(m) := c¬k(m) + ck(m)Emaxj∈[K] Nj

α(c¬k(m) + ck(m))(K − 1 + EN1)
≤

Emaxj∈[K] Nj

EN1
=: R(m) (25)

where c¬k(m) = ∑
j ̸=k cj(m). The bound is tight.

Proof. Note a+b
c+d

= a
c
γ + b

d
(1− γ) where γ = c

c+d
for any a, b, c, d ∈ R. Applying this to

our case, we get

E(m) = c¬k(m)
α(c¬k(m) + ck(m))(K − 1)w + ck(m)

α(c¬k(m) + ck(m))R(m)(1− w) (26)

where w = α(c¬k(m)+ck(m))
α(c¬k(m)+ck(m))(K−1+EN1) ∈ [0, 1]. Now we split into two cases for K = 1 and

K > 1. For the case K = 1 we only have a single iterative state and so C¬k(m) = 0,
α = 1. In this case we trivially have E(m) = R(m). Now suppose K > 1. In this case,
since α(c¬k(m) + ck(m)) ≥ maxj∈[K] cj(m), we have

ck(m)
α(c¬k(m) + ck(m)) ≤

ck(m)
maxj∈[K] cj(m) ≤ 1 (27)

Which means we can bound E(m) by removing the term in front of R(m),

E(m) ≤ c¬k(m)
α(c¬k(m) + ck(m))(K − 1)w + R(m)(1− w) (28)

By the same logic, we have
c¬k(m)

α(c¬k(m) + ck(m))(K − 1) ≤
c¬k(m)

maxj∈[K] cj(m)(K − 1) =
∑

j ̸=k cj(m)
maxj∈[K] cj(m)(K − 1) ≤ 1

(29)

which means

E(m) ≤ w + R(m)(1− w) (30)
≤ R(m) (31)

Where the last line uses the fact that R(m) ≥ 1 since N1 ≥ 0. The bound is tight
because when K = 1 we have E(m) = R(m). This completes the proof
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B Additional Details and Results

B.1 Algorithms
Note here we use x̃ to denote a batch of inputs [x1, ..., xm] for m different chains, and
the same for other variables.

Algorithm 6 Vectorized MCMC algorithm with vmap(sample) function
1: Inputs: sample x̃0, seed r̃0
2: for i ∈ {1, ..., n} do
3: generate x̃i, r̃i ← vmap(sample)(x̃i−1, r̃i−1)
4: end for
5: return x̃1, . . . , x̃n

Algorithm 7 Vectorized FSM MCMC algorithm with vmap(step) function
1: input: initial value x̃0, # samples n
2: initialize: z̃ = vmap(init)(x̃0), X̃ = list(), B̃ = list()
3: Set t̃ = 0 and k̃ = 0
4: while mint̃i∈t̃{t̃i} < n do
5: (k̃, z̃, ˜isSample)← vmap(step)(k̃, z̃)
6: append current sample value x̃ stored in z̃ to X̃
7: append ˜isSample to B̃
8: update sample counter t̃← t̃ + ˜isSample
9: end while

10: return X̃[B̃]

25



Algorithm 8 Transition kernel for elliptical slice sampler with log-pdf log p, covariance
matrix Σ.

1: Input: Sample x
2: Choose ellipse ν ∼ N (0, Σ)
3: Set threshold log y ← log p(x) + log u : u ∼ U [0, 1]
4: Set bracket [θmin, θmax]← [θ − 2π, θ] : θ ∼ U [0, 2π]
5: Make proposal x′ ← x cos θ + ν sin θ
6: while log p(x′) > log y do
7: Shrink bracket and update proposal:
8: if θ < 0 then
9: θmin ← θ

10: else
11: θmax ← θ
12: end if
13: x′ ← x cos θ + ν sin θ : θ ∼ U [θmin, θmax]
14: end while
15: Return x′

B.2 FSM Design
Detailed Construction in the two sequential while-loops case Here, we describe
the FSM construction for programs with two sequential while-loops in detail. Following
the constructions introduced in the main body, let us note

• F1 := ({S11, S12, S13},Z, δ1, S11, S13) the FSM associated to B1

• F2 := ({S21, S22, S23},Z, δ2, S21, S23) the FSM associated to B2

By construction, S21 is empty. Both FSMs share the same input space, which is the set
of local variables values associated to the original sample function.

Then, the resulting FSM representation of sample is (S,Z, δ, S11, S23), where

• S = {S11, S12, S13, S22, S23}.

• Transition function δ defined as

δ(S, z) =


δ1(S, z) if S ∈ {S11, S12}
δ2(S21, z) if S = S13

δ2(S, z) if S = {S22, S23},
(32)

whose construction illustrates the “FSM stitching” operation performed.
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Detailed Construction in the two nested while-loop case Here, we describe the
FSM construction for programs with two nested while-loops. Following the constructions
introduced in the main body, let us note
Fi := ({Si1, Si2, Si3},Z, δi, Si1, Si3) the (inner) FSM associated to B2.
Then, the resulting FSM representation of sample is (So,Z, δo, S1, S3), where

• So = {S1, Si1, Si2, Si3, S3}.

• Transition function δo defined as

– δo(S1, z) = δo(Si3, z) runs the outer while-loop condition on z, goes to Si1 if
True, and S3 otherwise.

– δo(S, z) = δi(S, z) if S ∈ {Si1, Si2}

B.3 Additional Implementation Details
FSM wrapper design. In our experiments, we use a native Python while loop in
Algorithm 3, and use a jax.lax.scan to run the FSM step function for blocks of 100
steps, when drawing n > 100 samples. This gives us the flexibility to store the results
in dynamically shaped lists/arrays and transport to the CPU for faster array slicing
when CPU memory is available, whilst still reaping the benefits of JIT compilation.

Compilation. We JIT compile both vmap(step) and vmap(sample) functions for
each MCMC algorithm implementation. For Delayed Rejection and the Elliptical Slice
Sampler (with n = 25) we remove compilation time to get more accurate results or the
runs with small numbers of chains m, due to the low cost of the computations involved.

JAX implementation. When comparing to non-FSM implementations, we used
BlackJAX (Cabezas et al., 2024) for fair comparison with our method, since we use
BlackJAX primitives for the key computations in some of our algorithms (e.g. HMC-
NUTS). Where a BlackJAX implementation was not available (e.g. Delayed Rejection),
we wrote our own for fair comparison with our FSM implementation.

B.4 Additional Results
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Figure 8: Walltimes and ESS per second using the Elliptical Slice Sampler (non-FSM
vs FSM implementation) on the Real Estate Dataset described in Section 7, when
restricting the dataset to the first n ∈ {25, 100, 400} datapoints. For each dataset
size, the best walltime and ESS/second is obtained by both implementations when
using m = 1024 chains. Our FSM implementation can obtain the greatest efficiency
for all dataset sizes. As the log-likelihood cost increases (the log-likelihood in GPR
regression costs O(n3)), we see the FSM efficiency gain increase, reflecting the benefits
of amortization.

Figure 9: Efficiency Ratio of our elliptical slice FSM against BlackJAX’s elliptical
slice algorithm (as measured by estimated R(m) = E[maxj∈[m] Nj]/E[N1] (i.e. iters
per sample) and walltime) on the Real Estate Dataset described in Section 7 when
restricting the dataset to the first n ∈ {25, 100, 400} datapoints. The relative efficiency
of the FSM improves as the number of chains used increase, and as the log-likelihood
cost increases. When n = 400, we almost achieve the theoretical bound R(m) in
speed-ups.
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Table 2: Effective Sample Size per Second and Kernel Stein Discrepancy (KSD) for
transport elliptical slice sampling (TESS (Cabezas and Nemeth, 2023)) with and
without our FSM implementation against NeuTra (Hoffman et al., 2019), which also
uses preconditioning flows, and two adaptive HMC variants (MEADS (Hoffman and
Sountsov, 2022) and CHEES (Hoffman et al., 2021)). Each method uses 128 chains
where each chain draws 400 burn-in samples for tuning followed by 1000 warm samples.
Our FSM implementation of TESS achieved the best ESS/Second on three out of four
problems, in two cases improving the state-of-the-art by roughly a factor of 2.

Dataset Effective Sample Size per Second KSD

MEADS CHEES NeuTra TESS TESS-FSM MEADS CHEES NeuTra TESS TESS-FSM

Predator Prey 1.53 nan 1.59 2.27 3.80 1.13e+6 1e+6 4.5e+5 4.37 7.18
Google Stock 480.76 60.19 185.12 1116.31 2426.16 1.83 0.57 2.73 0.84 0.78
German Credit 141.50 198.99 186.17 58.95 59.04 4.68 6.16 4.58 4.37 4.23
BOD 64.846 247.02 130.59 2978.03 3252.64 2.61e+14 9.63e+15 1.39e+14 49.27 10.80
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