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Abstract

Estimating joint distributions (a.k.a. couplings) over counterfactual outcomes is central
to personalized decision-making and treatment risk assessment. Two emergent frameworks
with identifiability guarantees are: (i) bijective structural causal models (SCMs), which are
flexible but brittle to mis-specified latent noise; and (ii) optimal-transport (OT) methods,
which avoid latent noise assumptions but can produce incoherent counterfactual transports
which fail to identify higher-order couplings. In this work, we bridge the gap with coun-
terfactual cocycles: a framework for counterfactual transports that use algebraic structure
to provide coherence and identifiability guarantees. Every counterfactual cocycle corre-
sponds to an equivalence class of SCMs, however the cocycle is invariant to the latent noise
distribution, enabling us to sidestep various mis-specification problems. We characterize
the structure of all identifiable counterfactual cocycles; propose flexible model parameter-
izations; introduce a novel cocycle estimator that avoids any distributional assumptions;
and derive mis-specification robustness properties of the resulting counterfactual inference
method. We demonstrate state-of-the-art performance and noise-robustness of counterfac-
tual cocycles across synthetic benchmarks and a 401(k) eligibility study.

Keywords: causal inference, counterfactuals, structural causal models, normalizing flows,
optimal transport

1 Introduction

In many fields such as medicine, economics and public policy, decision makers need to
predict outcomes under different actions. Common examples include estimating how a
higher drug dose would affect a patient’s recovery; forecasting today’s inflation if last year’s
interest rates had been higher; or inferring the effect of tax relief on poverty levels. This
gap between observed data and counterfactual scenarios lies at the heart of identification
in causal inference: we see outcomes under one (observational) regime, but want to know
what would have happened under another (counterfactual) regime.

Over recent decades, two complementary frameworks have provided principled ways to
identify causal quantities from observables. The potential outcomes framework (

) posits latent counterfactual variables whose statistical links to observed outcomes
encode causal assumptions. The causal graphical model framework ( ;
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) represents those assumptions in a directed acyclic graph and derives identi-
fication by d-separation and the do-calculus. Both formalisms yield identification results
for average treatment effects, marginal counterfactual distributions, and many other causal
targets, by expressing them as functionals of the observed data distribution.

Yet a fundamentally harder class of causal targets remains: those that demand an ex-
plicit joint distribution across counterfactual outcomes, known as a counterfactual coupling.
To understand the distinction, consider estimating the average treatment effect (ATE) of a
binary treatment X € {0,1} on a set of outcomes Y := (Y1,...,Y,) € R?,

ATE := E[Y(1) =Y (0)] = E[Y(1)] — E[Y(0)] .

The ATE factorizes into the treated and control means. In a randomized control trial (RCT),
these can be estimated by simple averages (e.g., E[Y (1)] = L - Y(®(1) for treatment
units {YO (1)}, ~jig Py(1)). Now, consider instead the treatment harm rate (THR) (

), which measures the probability that treatment worsens outcomes,

THR := P(Y (1) — Y(0) //1{31 [y1l; — [wol; < 0} dPy 1y y(0) (W1, 90) (1)

The THR is crucial to determine whether a treatment passes the “first, do no harm”
principle in medical science ( ). In contrast to the ATE, the THR cannot be
recovered from the marginals Py-(;) and Py (o) alone, instead requiring the joint distribution
Py (1),y(0), which is the coupling of the marginal counterfactual distributions. Unfortunately,
one cannot identify the coupling using the marginals alone, as there may be infinitely
many couplings that admit these marginals ( ). It also cannot be directly
estimated from data, since at most one of Y (1), Y(0) are ever observed per unit. Hence,
additional modeling assumptions are needed. The THR is just one motivation for the
need for counterfactual couplings. Other situations include individualized treatment and

decision-making ( ), algorithmic fairness ( ), and other
forms of treatment risk assessment ( )

A predominant approach to identifying and estimating counterfactual couplings is to
use the framework of Structural Causal Models (SCMs) ( ; ).

In the present setting with no confounding, the idea is to posit a structural model

Y =as f(X’ 5)7 SNP& giLX)

where £ captures all unobserved factors affecting Y (in practice, one may augment X to
include measured covariates Z). The coupling is then characterized by f and P¢ as

(Y(l), Y(O)) =a.s. (f(Lf)a f(07§)) R ]P)f :

To ensure the pair (f,P¢) can be identified up to model-specific automorphisms, present
theory requires f(x, ») to be bijective ( ; ).
An established, state-of-the-art approach to modeling bijective SCMs is to use causal nor-
malizing flows (or flow-based SCMs) ( ; ;

; ). This involves specifying a simple base
distribution (e.g., }f"g = N(0,I)) and learning f using flexible classes of conditional diffeo-
morphisms parameterized by deep neural networks ( ). However,
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as we establish in Section 2, this approach is brittle to the choice of base distribution. For
instance, if the tails or support of this distribution are mis-specified, the true flow f can
be extremely complex ( ), may not exist ( ), and the
resulting estimator f can fail to converge (see e.g., Example 1 in Section 2.1). Such limita-
tions are known in the normalizing flows literature, but existing solutions either fail to fully
address the problems, or sacrifice bijectivity of f, losing any identifiability guarantees.

A recent line of work has instead turned to optimal transport (OT) methods (

; ; ), appealing to the notion that
counterfactual worlds should be ‘as similar as possible’ whilst satisfying the desired change
( ). The basic idea is to specify transports between counterfactuals Y (1) =
To,1(Y(0)) and estimate them by solving a (quadratic cost) OT problem,

Ty =  argmin  E[|Y(1) - Toa(Y(0)]2] -
To,1:Py (0)—Py (1)
OT avoids specifying any noise distributions and guarantees transport identifiability for
continuous distributions ( ). However, as we show in Section 2.2, when treat-
ments take more than two values (e.g., X € {0,1,2}) and outcomes are multivariate, OT
can fail to identify the counterfactual coupling. This is because OT maps are generally not
closed under composition: Ty o # Tp1 0712 (see Example 2 in Section 2.2) and so there may
not exist a coupling over {Y(0),Y(1),Y(2)} that is consistent with the pairwise transports.

1.1 Our Contributions

We develop a modeling framework for counterfactual couplings that is free of the noise mis-
specification problems of SCMs and the incoherence of OT methods. Here we summarize
the main contributions and paper plan.

In Section 3, we focus on a simple set-up with counterfactuals {Y (z)},ex under a ran-
domized treatment X € R, and ask what properties a set of transports {7} ;/ } »/ex must
satisfy to couple them:

Y(2) =as. Toaw (Y(2') - (2)

It turns out that the necessary properties are precisely that

Tx,x =id and Tx”,x’ O Tm’,az = Txuﬂ; s (3)
—_——— ~
Identity Path Independence

up to a Py y_,-null set, along with a marginal-matching property. Moreover, these proper-
ties are sufficient to induce an admissible coupling over some set of counterfactuals (The-
orem 2). The path-independence property is the key ingredient missing from OT methods.
The properties in (3) make the function T : (z,2,y) — Ty (y) a cocycle ( )
from dynamical systems theory. We hence call (2) a counterfactual cocycle model. In
Theorem 3 we show that any counterfactual cocycle T can be written as

Tm,w’:fxof;a (4)

for some injective f, with left inverse f;", on the support of the counterfactuals. This gives
a natural route to parameterizing valid classes of counterfactual transports: one can use
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any class of conditional bijectors F := {fy : X xY — Y | § € O}, such as normalizing
flows ( ) or invertible neural networks ( ). In
Theorem 5 we provide general conditions for counterfactual cocycle identifiability, and show
that one can achieve these conditions using knowledge of the causal ordering (Theorem 6).

We conclude the section by showing that, under standard counterfactual assumptions,
the model (2) corresponds to an equivalence class of injective SCMs: Y (2) =55 f2(§) =
Y =as. f(X,€) (Theorem 7)—each one with a different noise distribution P¢. This connec-
tion suggests a robustness to modeling counterfactual cocycles. In particular, for a cocycle
Tpp = foo f;C to be well-specified via a class of functions F, it suffices that there exists
some distribution P¢ such that (fz)4P; = Py|x=, and f, € F for all z. Whether this
holds depends only on the expressiveness of F, and not on the true noise law. By contrast,
flow-based SCMs require that ( fm)# I@’g = Py|x—, holds for the chosen noise distribution
I@)g. If this choice poorly matches the tails, support or dependence structure of the true P,
the maps ( fz)mEX may be highly complex or non-bijective and therefore lie outside F.

In Section 4, we present counterfactual cocycle models under a more general setup that
can handle confounding, and cover our high-level approach to estimating causal quantities
with cocycles. In the unconfounded case where Y (x) ~ Py|x_,, the basic idea is directly
target the cocycle by minimizing a distributional discrepancy of the form

2
E(T) = Ex,x’w]}”x D(PY|X:1’7 (Tx,x’)# ]P)Y\X:x) . (5)

Once T is estimated, we can impute any counterfactuals and use them to empirically es-
timate causal quantities, rather than sampling from a possibly mis-specified noise law. In
Section 5, we derive a tractable cocycle optimization procedure and show it is asymptotically
equivalent to minimizing (5) (Theorem 8 and Theorem 9). The resulting cocycle estimators
are consistent under general conditions (Theorem 10) and satisfy a noise-robustness property
under appropriate function class restrictions: consistency for one underlying SCM implies
consistency for all SCMs that share the same cocycle (see Theorem 11 and Fig. 7). We also
show y/n-consistency for parametric classes under regularity conditions (Theorem 12).

In Section 6 we analyze the mis-specification robustness of counterfactual cocycles versus
SCMs in greater detail, by studying an invariance of cocycles under model reparameteriza-

(9)

tions. Specifically, any bijective reparameterlzatlon of the noise distribution Pg¢ IP’ of an

SCM, affects each structural map f, — fm := frog and but leaves the cocycle unchanged:

T, = f9 o (f9)" = faogog™ofh =Tow .

While an SCM has to commit to a particular choice of g through the noise parameteriza-
tion, one is free to model the cocycle using the parameterization f(9°) that has the lowest
functional complexity (e.g., Sobolev norm). Therefore, cocycles are equivalent to ‘minimal
complexity’ parameterizations of SCMs. As we prove in Theorem 13 and show in Exam-
ples 3 and 4, this property permits using smaller model classes F for the cocycle than for
an SCM with a fixed base distribution, while remaining well-specified. We also show our
method is robust to the dependence structure of the noise P¢, unlike recently proposed
quantile methods for SCMs ( : ).

In Section 7, we discuss the implementation details of counterfactual cocycle modeling.
In Section 8 we implement counterfactual cocycles in several simulations and a real experi-
ment, demonstrating state-of-the-art performance and robustness to noise assumptions.
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2 Background and Limitations of Existing Methods

To set the stage, we first present the basic setting of interest and formally introduce coun-
terfactual couplings. We then review existing approaches to modeling couplings and discuss
their limitations, which motivate our work.

Causal Inference and Counterfactuals Let V = (Vi,...,Vy) € H;l V; € R% be
observed random variables with distribution Py . For most of this work we assume V =
(Z,X,Y), where X € R! are a set of (treatment) variables we wish to manipulate (e.g., doses
of different medications), ¥ € R? are outcomes of interest (e.g., patient blood pressure, rest-
ing heart rate etc.), and Z € R! are pre-treatment covariates (e.g., age, gender). We denote
Y (x) as the counterfactual outcome to Y under a ‘do’ intervention that fixes treatment lev-
els to x (often denoted do(X = z)) ( ; ). Note, when
dealing with an i.i.d. dataset of observations, we index the samples as (V("))Z”:1 ~iid Py

Counterfactual Couplings In this work, we focus not only on the problem of identifying
and estimating the marginal distribution of each counterfactual Y (z), but on the harder
problem of recovering a joint distribution 7 over collections of counterfactuals, e.g.,

71 = L{Y (%) }zercx), I is finite.

Here L({Y (z)}zercx) denotes the joint law (distribution) of the variables {Y (x)},er. Such
couplings are necessary to identify many distributional effects of treatment. For instance,
in medical settings, if X € {0,1} is a treatment and Y € R a health outcome, we may wish
to quantify the extent of adverse effects caused by treatment via the THR as in (1). In
finance, we may wish to compute the Conditional Value at Risk (CVaR) (

) to assess the risk of a binary investment decision ( ):

CVaR, (Y(0) = Y(1)) = E[Y(0) — Y (1) | Y(0) = Y (1) > qa]
where ¢, is the a-quantile (VaR) of the return differential. In economic policy, one may
wish to analyze whether a reform primarily benefits those who would already be well-off
under the status quo, by assessing how the policy effect varies with status-quo outcomes:

u(a) = E[Y (1) = Y (0)|Y (0) = qa] -

When X is continuous, the same effect measures can be used to assess the dose effects by
replacing Y (1) — Y (0) with the contrast Y (x) — Y (0), or the effect of the current treatment
policy via the contrast Y (X)—Y (0). Note when there are multiple outcomes these quantities
may be computed per dimension, or in aggregate as in (1).

Unfortunately, standard causal inference frameworks for identifying the marginal distri-
bution of each Y (x), such as causal graphs ( ) and potential outcomes (

), cannot identify counterfactual couplings without further assumptions, since there can
be infinitely many couplings 7 that admit the same marginals over {Y (z)},cx. Even in the
fully randomized (unconfounded) setting, we only ever observe at most one counterfactual
outcome per unit, so one can never directly learn the coupling from data.

Below we review two popular approaches for identifying counterfactual couplings and
their limitations: structural causal models, and optimal transport methods.
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Z = f1(&) @ Z = f1(&1)

X = f2(Z,6) X(z) ==z
Vi = fo(Z, X, &) Z 6‘ Yi(e) = f3(7, X (2), &)
Yo = fu(Z, X, Y1,&) Ya(x)

Figure 1: Left: SCM over (Z,X,Y1,Ys2). Middle: corresponding maximal DAG. Right:
modified SCM after hard intervention do(X = z). Equalities hold almost surely.

2.1 Structural Causal Models

Structural Causal Models (SCMs) ( ; ) specify the full causal
mechanism on V' = (Vi,...,V;) using a set of independent (exogenous) noise variables
€ := (&, .., &) € € with distribution Pg := H;l:l P¢; and a structural map F': VX & =V,

\4 —a.s. F(V,f) . (6)

For identifiability, one usually assumes the variables V' admit a known causal ordering
V1 < --- < Vy. This concept, dating back to ), formalizes the idea that V; may
cause V; but not vice versa when 7 < j. Here we assume the variables are already ordered,
so no permutation is necessary. The ordering is used to restrict the SCM to be acyclic:

‘/j —a.s. fj(v<j>§j)> Vj € {17 s >d} : (7)

Here f; : Vo; x & — V; is the jth coordinate of F' that determines how V; depends on its
predecessors and the noise §;. In this case we can write V' = F(§) with F' lower-triangular.

Every acyclic SCM can be associated with a causal directed acyclic graph (DAG) G =
(V,E), with nodes {Vi,...,V;} and edges E = {V; — V; : i < j} encoding all possible
direct effects consistent with the ordering. This maximal DAG includes every forward
edge allowed by the ordering. However, since each f; may not necessarily depend on all
Vi,...,Vj—1, many sparser DAGs may also be consistent with the acyclic SCM. In practice,
when a specific DAG is known, the SCM can be explicitly restricted to

V}‘ —a.s. fj(Vpa(j)7§j) )

where Vi,,(j) C V<; are the ‘parents’ of V; in the causal DAG, denoted by the index function
pa(s) which satisfies j € pa(i) if and only if V; — V; in G ( ; ).

The counterfactuals under a do-intervention do(X = z) for any subset X C V are
determined by a modified SCM V' (x) =, 5. Fy (&), which sets the coordinate functions for X
as X (x) = z. Fig. 1 shows an example SCM, corresponding maximal causal DAG, and SCM
modification for a four variable example where Z < X <Y < Y3 and we set do(X = z).

Given an SCM, statistical functionals of any counterfactuals (e.g., (V (), V(2'))) con-
ditioned on any subset of observed variables W C V can be estimated by the familiar
three-step abduct-act-predict recipe ( E

Abduct. Update noise distribution to condition on evidence: I@’g — Pew=w-
Act. Modify structural equations to £}, F,.
Predict. Propagate noise: E[h(V(z),V(2/)) |W =w| = EgNﬂsg [h(Fy(€), F (€))].

6
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Table 1: Autoregressive normalizing flows, their transforms, and conditions for Lipschitz

continuity. M is a rational-quadratic spline ( ).
Model Autoregressive transform f;(v<;,&;) Lipschitz Condition
NICE ( ) &+ 1 (v<j) Lrg(s] pj Lipschitz
MAF ( ) & oi(ve) &+ (1= 05(vey))ni(ve;)  oj bounded
IAF ( ) & exp(Aj(vey)) & + py(v<y) Aj bounded, p; Lipschitz
Real-NVP ( ) &5 = exp(Nj(vej)rgry) & + 1i(v<j)legy)  Aj bounded, pu; Lipschitz
Glow ( ) & 0(v<)EG + g (v) gy o, bounded, p; Lipschitz
NAF ( ) & o Y w(vey) - a(oj(vey)& + pj(v<j)))  Always (logistic mixture CDF)
NSF ( ) & = vilyg-p,B1+M; (&G v<) Lo e B,B) Always (linear outside [—B, B])

Identifiability via Bijective Causal Models Various classes of SCMs have been pro-
posed in recent years, primarily relying on the flexibility of deep neural networks (
) ) ? )
; ). The most flexible of those models that can
identify counterfactual couplings are bijective causal models (BCMs), which constrain each
fj to be bijective on the noise &;. In particular, if two BCMs (F,P¢), (F,I@’g) produce the
same distribution Py, and each structural function f; and f] is monotone increasing on &;
(note for maps R — R, bijectivity and strict monotonicity are equivalent), they produce the
same counterfactual couplings ( ). BCMs are natural counterparts
to our proposed methods, and so we focus on them within the broader SCM framework.

A popular and state-of-the-art (SOTA) modeling approach for flexible BCMs is to use
normalizing flows ( ; ;

), which specify F' as a sequence of invertible and differentiable transformations from
a simple base distribution (e.g., I@‘E = N(0,1)) ( ). As discussed
above, the causal order restricts F' to be lower-triangular, for which autoregressive flows are
used (Table 1). Such flows can be composed for increased expressiveness while respecting
the causal ordering and enabling fast and exact maximum likelihood training. We refer to
such BCMs as flow-based SCMs.

While flow-based SCMs have achieved SOTA performance on causal inference tasks,
they suffer from a key practical limitation: if the base distribution ]@’5 poorly matches the
target Py, the required flow may be extremely complex or may not even exist. Although
these problems have been recognized in the normalizing flows literature, their effects on
flow-based SCMs have not been systematically studied. Alternative estimation approaches
for BCMs have been proposed based on quantile methods ( ;

). However, they too rely on a fixed noise distribution and can therefore
suffer from related mis-specification problems, as discussed in Section 6.4. Below we focus
on two primary problems that occur in flow-based SCMs: tail and support mis-specification.

Tail Mis-specification It is known that if the base distribution I@’g lies in a different
tail class to the observational distribution Py (e.g., exponential vs. logarithmic tail decay),
then no regular class of bi-Lipschitz flows can match the tails of Py (e.g., see Theorem
3.2 and Corollary 3.3 in ) and Theorem 3 in )). This is
problematic, since most flows are bi-Lipschitz, in some cases by design (see Table 1). Recent
work in the normalizing flows literature has mitigated the problem using tail-adaptive base
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Figure 2: True (orange) vs. estimated (blue) distribution of the treatment effect Y (1)—Y(0)
for the SCM Y (z) = (x + 1)&, under two different noise laws: (LHS) mixed-
tailed £ (density plots) and (RHS) binary £ (CDF plots). Estimates are obtained
with flow-based SCMs using Gaussian (CNF(G)) and Laplace (CNF(L)) base
distributions I@’g, each trained on n = 2000 samples. For the mixed-tailed case,
Y (1) —Y(0) is transformed to [0, 1] via o(y) = 1/(1 —e™¥) for visualization. Both
estimated flows fail to recover the effect distributions.

distributions ( ; ; ). However, those
approaches still impose isotropic tails per dimension and so can fail to learn distributions
where e.g., some V; has a heavier right tail than left tail, which occurs frequently in finance

and climate applications ( ; ). This mis-
specification can also result in estimation pathologies due to high-variance log-likelihood
gradients ( ). In the extreme case that E[|V||2 = oo and P¢ = N(0,[) is

chosen, the gradient may even be infinite and so the minimizer Fy: can diverge as n — oo.

Support Mis-specification If there is no differentiable function that transports I@’g to
Py, then no normalizing flow can map between them (since normalizing flows are diffeomor-
phisms). This arises whenever a continuous base is chosen with Supp(ﬁ”g) = R?, while the
true BCM noise distribution has disconnected support (e.g., & ~ oo+ (1 —a)Py) or lies on
a lower-dimensional manifold (e.g., discrete §;). Such noise structures have been assumed in
medical settings, where patients with latent discrete characteristics may respond differently
to treatment ( ; ). In the normalizing flows literature, solu-
tions to this relax the bijectivity of F' ( ; ). However,
this would sacrifice any identifiability guarantees for counterfactual inference. Additionally,
this mis-specification can also lead to estimation identifiability problems. The expected
log-likelihood depends only on the inverse flow and its derivatives over the support of Py .
As a result, if a minimizer Fp- satisfies supp((F,.")xPy) 2 supp(P¢), it may not be unique
on supp(ﬁ"g), and so each minimizer may result in a different distribution.

Example 1. To demonstrate the severity of these problems, consider the structural model,
Y(z)=(x+1)¢ , X ~Bern(1/2)

Suppose the estimation target is the distribution of the treatment effect Y (1) — Y(0) = &
and the noise has a heavy left tail and light right tail & ~ 1|N(0,1)| — 3|NBP(0.1,0.1)[.!

1. Here, NBP(a, ) is the heavy-tailed Normal-Beta-Prime distribution on R ( ).
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Fig. 2 (left + middle left) shows the true density of Y (1) — Y (0), rescaled to [0,1] via
o(y) = 1/(14+exp(—y)) for better visualization, alongside estimated densities via flow-based
SCMs with Gaussian (left) and Laplace (middle left) base distributions. Since x € {0, 1} is
binary, we specify separate flows f, for each x € {0, 1}, rather than parameter sharing across
x. Each flow was trained by maximum likelihood on n = 2000 samples { X @y @ -, using
2-fold cross-validation over Neural Spline Flow (NSF) ( ) and Masked
Autoregressive Flow (MAF) architectures ( ). The full architecture
and optimization settings are described in Section 8.1. In order to match the heavy left
tail, both estimated flows move most probability mass there, but as a consequence fail to
recover the rest of the density. Note the large mass near zero of the estimated densities
under the transformation o does not indicate a learned heavy left tail.

We next re-implement the same flow-based models with binary noise, £ ~ Rad(1/2), this
time showing the learned CDF's (Fig. 2, middle right and right). While we acknowledge
flows are not designed for discrete outcomes Y, the example serves to highlight the problems
that arise when the support of Py, lies on a lower-dimensional manifold than that of P, .
Since each model only evaluates the likelihood on a set of measure zero under the base
distribution, there are potentially infinitely many transports achieving the same likelihood.
Thus, both flows fail to learn the size and placement of the modes of the distribution (as
indicated by the jumps in the learned vs. true CDF). Note that if X was continuous then
Y would also be continuous in this setting, so such mis-specification can arise in practice.

2.2 Optimal Transport Methods for Counterfactual Inference

Several recent works estimate counterfactual couplings with optimal transport (OT) (

: : ), providing an alternative
to SCMs, albeit in a restricted setting. Given discrete treatments X and continuous out-
comes Y, the idea is to model the coupling L({Y (z)},ex) via a collection of transports
{T}; 2 }zex that model deterministic counterfactuals under treatment changes,

Y(.T) =a.s. Tx,x’(y(x/)) ) :E,IE/ e X. (8)

Since many sets of transports can give rise to the same marginal counterfactual distributions,
the transports are identified via the principle of ): out of all couplings, choose
that which induces the most “similar” counterfactual worlds. This is formalized by choosing
T to minimize the cost of transporting mass from Py (,/) to Py (4,

Ty =atgming v yv(@)=n @B 1Y (@) = Tow (Y (2"))[I3] 9)

Since quadratic-cost OT problems between continuous distributions have a unique solution
(known as the Brenier map) ( ), this guarantees identifiability when Py, is
absolutely continuous for all x. This approach is appealing, as it avoids the need to specify a
full generative process (e.g., noise distributions) or causal ordering when there are multiple
outcomes Y := (Y1,...,Y,). Under no confounding, one has Py (,) = Py|x—,. In practice,
given i.i.d. data {Y® (z)}i=y ~ Py|x—g, one can plug the empirical analogues I@’y(x) =
n—lx o (Sy(i)(x) of the conditionals into (9) and solve the resulting problem (either in closed
form or using specialized solvers). When there are measured confounders Z, the transports
are specified between {Y'(z, ) }4 .exxz instead ( ).
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Direct vs Indirect OT Map Total Effect (Direct OT) Total Effect (Indirect OT)
irec .-
8 ; :idiretct :——‘/ e, 6 6 ° ° ®
6 i} —_ —_
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Y1(2) — Y1(0)

Figure 3: Transport of 200 samples Y (0) ~ Py to P; and Py using OT maps. Blue:
direct route (Y'(1),Y(2)) = (T1,0(Y(0)),T20(Y (0)). Orange: indirect route
(T10(Y(0)),To1 0 T1 (Y (0)). Left: Imputed Y (2) under each method; dashed
lines highlight the inconsistency. Middle & right: Density of Y (2) — Y'(0) de-
pends on which maps are used (direct vs. indirect), so cannot be identified.

When Y is scalar, the Brenier map is the quantile transform ( ) and
can be estimated via the CDF ( ). However, when Y is multivariate,
one needs to solve the OT problem separately for each pair (z,z’), typically using a spe-
cialized solver, which makes it challenging to handle continuous treatments and covariates.

A more serious issue overlooked in the literature is that, except in special cases, Brenier
maps will not yield a valid joint coupling when dim(Y) > 1 and |X| > 2. The solution to
(9) is the gradient of a convex function, T} , = Vg o ( ), but the composition
of two such maps is generally not the gradfent of a convex function when dim(Y) > 1 (

). Consequently, if T;,,y . 7 T::”,a:’ o T;,7 » on a set of positive Py (,)-measure,
the transports cannot satisfy (8) for any set of counterfactuals with the same marginal dis-
tributions. Below we demonstrate this incompatibility and resulting identifiability issues.

Example 2. Consider solving the quadratic-cost OT problem for transporting between
bivariate Gaussian distributions Py, P1, P, with the following means and covariances.

=000, mmo=(():(y B)). o= (3.6 )

The Brenier map from P, to P,/ is the affine map T, 5/ (y) = por + Az 2 (y — p), with
Agw = SY2(S25, S22y 12 g ol e {0,1, 2},

However, as X1 and X5 do not commute, the maps cannot be valid counterfactual transports
in the sense of (8), since using them to impute counterfactuals results in a contradiction:

Y(2) = Y(2) =as. T20(Y(0)) = T2 0 T10(Y(0)) = (A2 — A2,141,0)(Y(0) — o) #as. 0.

To illustrate the identifiability issues that arise from this, suppose we draw n = 200 samples
{Y®(0)}2, ~ Py and impute their counterfactuals {Y(1),Y#(2)}7_,. There are two

10
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natural ways of using the OT maps to do this: (i) directly, yo — (T1,0(v0), T2,0(y0)); and (ii)
indirectly, yo — (T1,0(y0),T2,1 0 T1,0(y0)). Each approach uses two out of three OT maps
to induce a coupling over {Y(0),Y(1),Y(2)}. Fig. 3 shows that the direct map Tp2 and
the composition 772 o Tp 1 result in different counterfactual predictions for Y'(2) (left) and
different distributions of the total effect Y (2) — Y'(0) (middle and right). Thus, the induced
coupling depends on the subset of transports used, and is not identifiable from these maps.

3 Transport-based Counterfactual Couplings in a Simplified Setting

Our goal is to develop a framework for modeling counterfactual couplings that avoids the
limitations of SCMs and OT methods. The basic idea is to directly model counterfactual
transports (as in OT), but in a way that guarantees coupling identifiability under general
conditions (as in SCMs). To that end, in this section we analyze the algebraic properties
that a set of transports {17, ;}, 27cx must satisfy to induce a valid coupling between coun-
terfactual outcomes {Y (z)}zex, in a simplified confounding-free setting. We show that these
properties are precisely those of a cocycle. The cocycle properties induce a factorization of
the transports so that they can always be constructed by a family of injective functions.
We use this structure to prove general conditions under which such cocycles are identifiable.
We then show that every counterfactual cocycle model corresponds to an equivalence class
of injective SCMs. This connection gives a practical route for parameterizing identifiable
model classes, and suggests that directly modeling counterfactual cocycles can avoid the
mis-specification problems of SCMs.

3.1 Counterfactual Cocycles as Admissible Transports

We focus on a simple setting where X € X C R is a randomized treatment, Y :=
(Y7,...,Y,) € Y C RP are a set of outcomes of interest, and {Y(z)}zex € Y are coun-
terfactuals under different treatment levels. Throughout, we assume all spaces (here X,Y)
are standard Borel and all maps are Borel measurable. To formalize counterfactuals in this
setting, we work under the standard potential outcome assumptions ( ).

Assumption 1. 1. Consistency: Y =,5 Y (X)
2. Exchangeability: {Y (z)}rex L X

Assumption 1 is consistent with a “coarse-grained” causal DAG X — Y (
) and identifies the marginal counterfactual distribution as Y (z) ~ Py x—z-
To recover a coupling over {Y(x)},ecx, we follow previous transport-based approaches
and start from the existence of a collection of transport maps between counterfactual out-
comes under different treatment levels.

Assumption 2. There exist a collection of (Borel measurable) transport maps {Ty v = Y —
Y | z,2" € X} that satisfy the Counterfactual Coupling (CC) property:

Y(z) =as Tpw(Y(2')), foralza eX. (CC)

In contrast to previous transport-based methods, our approach to modeling the trans-
ports is motivated by the insight that, as is easily checked, (CC) can only hold if the
transports satisfy the following properties:

11
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1. Identity: For each z € X,
Tw,x =1id, ]P)Y\Xzac'a's' (ID)

2. Path Independence: For each x,2’,2" € X,
Torss 0Ty = Turzy Pyjxogras Y
3. Distribution Adaptedness: For each z,2’ € X,
(T @) 4Py |x =2 = Py|x =0 (DA)
Properties (ID) and (PI) together make the map
T (z,2'y) = T (y) ,

a cocycle ( ). In classical dynamics, a cocycle describes how a dynamical system
state evolves as time flows. In the present context, “time” is replaced by the treatment value
x, the “state” is the outcome value y(z), and the cocycle T' encodes how y(z) changes as
treatment values change x — 2. If a cocycle also satisfies (DA) we call it a Py x-adapted
cocycle. Lastly, if a cocycle T : X2xY — Y satisfies (CC) then we call it a counterfactual
cocycle. We thus also refer to (CC) as the counterfactual cocycle property.

Importance of Cocycle Properties (DA) alone ensures that (CC) holds in distribution,
Y(2) =¢ Tow (Y(2)).

However, without (ID) and (PI), the transports T, cannot describe a valid coupling
between a set of counterfactuals as in (CC). For example, if (PI) fails and we try to impose
(CC), we can arrive at logical impossibilities in the counterfactual outcomes:

Y (22) =as. Ty 0 (Y(20)) #a.s. Tywy © Ty o (Y(0)) =as. Y(x2).

Fig. 4 illustrates this failure. This issue arises in recent transport-based models (

: : : ), where
T, is defined as the OT map from Py x—_, to Py|x—,. These maps satisfy (ID), (DA) and
an invertibility property (T} o 0Ty (Y (2)) =as. Y (x)), but, as demonstrated in Section 2.2
can fail (PI) when |X| > 2 and dim(Y) > 1, leading to identifiability problems.

The properties (ID), (PI), and (DA) are purely mathematical and so are necessary
but not sufficient to guarantee (CC)—the latter requires that the counterfactual variables
{Y(z)}zex exist on a common probability space and are actually linked by the transports.
However, these properties are necessary and sufficient to ensure (CC) holds w.r.t. some set
of variables {Y ()} ex. Thus, these properties characterize all sets of transports which can
induce admissible couplings over counterfactuals. This is formalized below.

Definition 1. A set of transports {Tp . : Y — Y}, wex are admissible w.r.t. Py|x if
there eists a collection of random variables {Y (z)}zex such that Y(x) ~ Py x—, and
Y(2) =as. Tou (f/(a:’)) for every z, 2" € X.

Theorem 2 (Cocycle Equivalence to Admissible Transports). {1, v : Y — Y}, »ex satisfy
(ID), (PI), and (DA) w.r.t. Py|x if and only if they are admissible w.r.t. Py |x.

Our aim is therefore to develop a framework for modeling and estimating counterfactual
cocycles. In the rest of this section we focus on the modeling aspects.

12
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7~_ — T: (DA) + (ID) + (PI)
X1, X0 "
== T:(DA) + (ID) only

Y2

Figure 4: Hlustration of cocycle property importance for coherent counterfactual transports.
Shaded regions show trajectories of different values of Y (w2) ~ Py (,,) as we
change the treatment level xo — g — x1 — x2, under transport collections T
(maroon) and T (gray). Lines indicate trajectory for single value y(z2) within
each region. {T} .}z aex satisfies (DA) and (ID) but fails (PI), leading to the
logical impossibility that Y (z2) # Y (x2) on a set of strictly positive measure (see
mismatch in gray regions of Py(,,)). The transports therefore do not define a valid
counterfactual model. In contrast, {T; , }4 7ex satisfy all cocycle properties and
so cohere with one another, inducing a valid counterfactual model (Theorem 2).

3.2 Structure and Identifiability of Counterfactual Cocycles

The previous results tell us that modeling admissible counterfactual transports reduces to
targeting the properties (ID), (PI), and (DA). However, it remains unclear how to construct
transports that satisfy these properties in general, or under what conditions the resulting
system of transports is uniquely determined. Both questions must be answered in order to
apply these properties in practice to estimate counterfactual transports.

Characterizing Cocycles via Factorization The following result shows that every
cocycle has a special structure: it can always be constructed using a family of injective
functions. This provides a clear path to modeling transports that satisfy (ID) and (PI).

Theorem 3 (Cocycle Factorization). Let {1}, }zorex satisfy (ID), (PI), and (DA) w.r.t.
Py x. Then there is a set Yo C Y and, for each x € X, a function fy : Yo — Y with
left-inverse f;F : Y — Yq, such that for every x’ € X:

— +
Ta;;r’ = fzo fxu PY|X:z"a'S’

13
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The proof is straightforward: one essentially defines f, := T, ;, and ff = Ty, for
any fixed zp € X and applies (ID) and (PI) to verify that T, v =as. fzo© f;?. To ensure
faf is a left inverse, one needs to take care in measurably restricting the functions to map
to and from a set Yo C Y of full Py x_,,-measure. When f.F is an exact inverse, f; o f;?
is a special kind of cocycle known as a coboundary ( ). Hence, we call a
function f : (x,y) — f2(y) that satisfies T, »» =as. fz 0 f; a coboundary map.

Theorem 3 shows that the construction of a parameterized family of cocycles {Ty}oco
reduces to specifying a parameterized family of coboundary maps—i.e., functions f : X x
Yo — Y that are injective in their last argument (a.k.a. conditionally injective),

FC{f:XxYo—Y|f(z, ) injective Vo € X} .

Parameterized classes of conditionally bijective functions f : X x Y — Y are commonplace
in statistics and machine learning and so can be used for this task. For instance, we could
use any normalizing flow or invertible neural network Y — Y, ( ;
; ), and condition the model parameters on = € X.
We note that specializing to bijections is not overly restrictive. The true f, in Theorem 3
is already bijective on Yo — Y, := f,(Yo). When the sets {Y,},ex are Borel-isomorphic
(e.g., full-dimensional Borel subsets of Y?), classical results guarantee a measurable bijective
extension fy : Y=Y of f, ( , Thm. 15.6). For instance, f,(y) = Bz + y with
Yo = [0,1] and Y, = [z, x + 1] extends naturally to Y = R. Although the extension may not
always be continuous, classes of continuous bijections (e.g., flows, invertible NNs), remain
highly expressive, and will be used to practically specify cocycle models in Section 7.

General Conditions for Identifiability Theorem 3 provides a general route for param-
eterizing flexible classes of counterfactual cocycles, but does not provide any guidance on
how to constrain F so that at most one cocycle T' constructed by functions in F satisfies
(ID), (PI) and (DA). Indeed, many sets of transports may satisfy these properties, but at
most one satisfies (CC) for a particular set of counterfactual variables.

To demonstrate this point, a collection of OT maps {T' ég/T)}xeX can in principle be
used as coboundary maps to construct a cocycle that satisfies (ID), (PI) and (DA). One
can simply define f, := Téﬁf) as above for some zo, and define a Py|y-adapted cocycle
Tx,m/ = fro0 f; . However, since OT maps do not necessarily satisfy (PI), the constructed
cocycle T will depend on the reference point xp, and so there are potentially |X|-many
different construction choices. We already saw this in Example 2 and Fig. 11: the middle
plot shows the distribution of the treatment effect when the reference point zg = 0 is
implicitly used, while the RHS plot shows the same distribution using the reference xy = 1.

The factorization structure of cocycles enables us to provide general conditions for co-

cycle identifiability. First, we formally define what it means for a cocycle to be identifiable.

Definition 4 (Identifiability). Let F be a set of coboundary maps f : X x Yo — Y. For
each f € F define the associated cocycle T¢(z,2',y') := fxof;(y’). A Py x-adapted cocycle
T is identifiable in F if

1. 3f*e FuwithT = Tf* (IP)X ®Px’y)—a.8.

2. Note, we do not require that Y is a full-dimensional subset of RP.
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2. For any f € F, if Ty is a Py|x-adapted cocycle satisfying (ID), (PI) and (DA), then
Tf =T (PX X ]P’ny)—a.s.

A convenient way to state general identifiability results is in terms of transformation
groups.® A transformation group G on Y is a set of bijective transformations g : Y — Y
that contains the identity and is closed under compositions and inverses. We say that
a cocycle T is G-valued if its coboundary map f satisfies f(x, ) := f, € G for every
x € X. For example, any bijective f, : Y — Y belongs to the automorphism group of Y,
denoted Aut(Y). If f, is also bi-continuous, it belongs to the group of self-homeomorphisms,
Homeo(Y). If f, and f,; ! also have continuous derivatives (e.g. if modeling each f, using
typical parameterizations of the flows in Table 1), it lies in the diffeomorphism group,
Diff! (Y). The set of all G-valued coboundary maps is denoted

Fo={f:XxY—=>Y| f(z,+) eG}.

Note since each f, is bijective on Y, we define its domain as Yo := Y and set f; := f, !,
without loss of generality. We denote Aut(P) := {g € Aut(Y) : g4P = P} as the set of
transformations that leave distribution P € P(Y) unchanged, and Aut(P)|g := Aut(P)NG
its restriction to G. Lastly, denote [f]p as the set of functions equal to f, P-almost surely.
With these concepts, we can now state our general identifiability result.

Theorem 5 (Identifiability of Counterfactual Cocycle). Let T be a Py |x-adapted, G-valued
cocycle. T is identifiable in Fg if and only if Aut(Py|x—z,)|c C [id] , for some zg € X.

Py x=¢

Intuitively, the result is a consequence of the fact that (i) any G-valued Py, x-adapted
cocycle has an almost sure coboundary representation T} ,» = f, o f;l with {f;}zex C G,
and (ii) any other cocycle T differs only by a twist Tmc/ = fyrobyo b;,l o fx_,1 with
by € Aut(Py|x—y,)|c. Thus, identifiability requires that such automorphisms behave like
the identity map. Thus, the non-trivial elements of Aut(Py|x—,,)|c characterize the trans-
formations that lead to indeterminacy. This parallels identifiability results in latent variable
models and nonlinear ICA ( ; ), where
partially identified models can still be useful for some estimands ( ). Lastly,
we note that the choice of zg is arbitrary: if g #a5. id is an automorphism of Py y—_,, then
Tyazo0go T;éo Fa.s. 1d is an automorphism of Py x_, for any = € X.

Identifiable Parameterizations via TMI Maps In general, specifying models with a
smaller group G preserves identifiability for a larger set of conditional distributions Py,
but risks violating (DA). A practical way to achieve identifiability without risking (DA) for
continuous outcomes Y, is to constrain G using knowledge of the causal ordering of variables.
In particular, suppose Y = (Y1,...,Y,) € RP admit a known causal order ¥; < --- <Y},
(here we assume the variables are already permuted to reflect this order). To preserve the
causal order, it is natural to enforce a lower triangular structure in the transports via f:

f:c(y) = (f:l?,l(yl)v fx,z(yhy?)?"‘7f1‘7p(y17‘ . '7yp)) .

3. For simplicity, we characterize identifiability under the assumption that the coboundary maps are bijec-
tions (and hence group-valued), but a nearly identical version holds when they are injections, in terms
of a more complicated algebraic construction involving monoids instead of groups.
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Requiring that each f, ; is strictly increasing in y; makes f, a triangular monotone in-
creasing (TMI) map. The set of such maps with full support forms a transformation group,
Grmr- It is known that, for any two absolutely continuous distributions P, Q € P(RRP), there
is a (a.s.) unique TMI map g € Gwmp such that P = gxQ ( ). Below
we use this result to prove that, if 7' is a Grmi-valued cocycle adapted to any Py x (i.e.,
not necessarily absolutely continuous) and Y C RP, then it is identifiable within Fg.,,,-

Theorem 6 (Identifiability under TMI maps). Let T be a Py |x-adapted, Gryr-valued
cocycle and Y C RP. Then T is identifiable in Fg -

Since any family of autoregressive flows (e.g., Table 1) lie in Fg,,, (when the flow
parameters are conditioned on x), these architectures are a natural choice to model coun-
terfactual cocycles whilst guaranteeing identifiability. Although such architectures lead to
mis-specification problems in SCMs in Section 2.1, we will later see that using them to
model counterfactual cocycles avoids those problems.

3.3 Connection to SCMs

The factorization structure of cocycles and their viable parameterization using the same
function classes as BCMs suggests a close connection between counterfactual cocycles and
SCMs. This connection is formalized below and has important implications.

Theorem 7 (Cocycle Equivalence to Structural Model). A collection of counterfactual
variables {Y (x)}zex satisfies Assumption 1 and Assumption 2 with cocycle T : X2 x Y — Y
if and only if there is a function f : X x Yg = Y injective on its second argument, such that

Y =05 f(X,&), & eYoCV, &lX.

The proof is straightforward up to some measurability technicalities. To illustrate the
first direction, since (CC) implies (ID), (PI) and (DA), by Theorem 3 we have Y (x) =,
fzo [ (Y (2)) for injective f, with left inverse f,;7. Thus, one can set &y := f,f (Y (z0)) € Yo
and apply (CC) to get Y (z) =as. f2(&y). Defining f : (z,y) — fz(y), Assumption 1 gives
Y =as. f(X, &) by consistency. &y X holds since Y (zo) LX = f;F (Y (20))lLX.

A direct consequence of Theorem 7 is that every counterfactual cocycle model (CC)

corresponds to an equivalence class of SCMs of the form

V= @) T (f(fffgy)) = Fl&) 1o

where {x L&y and F : V — V is injective by the injectivity of f(z, «). Each member of
the equivalence class is defined by a different noise distribution P¢ := P¢, ® P¢,.. Naturally,
when f(z, «) is bijective (or has a bijective extension), the equivalence is to a class of BCMs.
Note that when Y is multivariate, (10) shows only a partial factorization of F'. However,
under the TMI restriction in Section 3.2, f further decomposes into coordinate maps,

Y} —a.s. fj (X7 Y<j7 é.Y,j) ) gYaj J'LX’

where each coordinate function f; strictly increasing in {y,;. This is precisely the identifia-
bility restriction used in BCMs ( ; ) and so is a
natural counterpart to the TMI restriction proposed in the previous subsection. However,
we do not need to assume &y ; 1L&y; for ¢ # j when deriving an SCM from a cocycle.
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Figure 5: Ilustration of robustness of counterfactual cocycle modeling in a randomized
control trial (i.e., Y (r) ~ Py|x—, and z € 0,1). Each dashed region, P;(F) and

, denotes the set of candidate noise distributions obtainable by pushing

Py (1) and Py () backwards through inverses of a function class 7 C {f:Y— Y}
Flow-based SCMs require committing to a fixed base distribution I@’g; the class

F is well-specified if and only if I@’g lies in the intersection Pi(F) N . By

contrast, cocycle models require only that the intersection is non-empty, so that

there exists some I’} such that (fz)#!"; = Py, for both z = 0,1. In that case,

the cocycle T1 9 = fi0 f0+ recovers the counterfactual coupling. Note the existence
of P} does not depend on which true noise distribution generated the data.

Noise Invariance of Counterfactual Cocycles A key difference between counterfac-
tual cocycles and SCMs is that cocycles are noise-invariant. In particular, the transport

Ta;,;r’ = fz © f;; ) (Tx,x’)# : IEDY|X:36 = ]P)Y|X::r’ ) (11)

does not change if we modify the SCM by changing the noise law P.. This invariance
suggests a practical robustness to directly targeting a cocycle that solves (11). In particular,
the SCM approach to modeling the system in (10) is to fix some base distribution If”gy and
class of functions F to model f (note one can always set Pe, = Py = LS 0xa (see

)). As we showed in Example 1 in Section 2.1, whether there is
a function f € F that correctly models the data distribution, i.e.,

(fa:)#]fpﬁy = ]P)Y\X:mv Vx € Xv (12)

depends on whether the properties of the chosen base distribution If”gy (e.g., support and
tails) matches the true noise distribution P¢, . In contrast, for there to exist a function

f € F that solves (11) for every z,2’ € X, we require just that there exists some noise
distribution Pz € P(Y) such that (12) holds:

AP € PY) ¢ (fo) 4P =Pyjx—p, VzeX. (13)
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To see this, note that (13) implies (f;r)#IP’y‘x:x =4 (f;;)#Pylx:x/ for every x and z/, which
implies (11). (13) is a much weaker requirement than (12). For instance, it is satisfied
in Example 1 for some f € F when using most of the flow classes in Table 1. Moreover,
whether (13) is satisfied does not depend on the true noise distribution of the corresponding
SCM. Fig. 5 illustrates this point using simple a binary treatment setting. These properties
are analyzed in greater detail in Section 6 and underpin our approach to estimation.

4 Counterfactual Cocycles: General Framework Under Confounding

Having established a viable approach to modeling counterfactual transports in a simple
set-up, we now present our framework under a more general setting, cover our approach to
model parameterization, and how we propose to estimate causal quantities with cocycles.

4.1 Counterfactual Cocycle Models Under Partial Orderings and Confounding

Let V := (V1,...,Vy) € H;l V; C R? now denote the full set of observed variables. We
retain focus on a structured setting where X := (Xi,...,X,;) C V are a set of (‘treatment’)
variables we wish to manipulate, Y := (Y3,...,Y},) C V are a set of outcomes of interest
that may be affected by the treatments, and Z := (Z1,...,7;) C V are a collection of ‘pre-
treatment’ covariates which may confound the effect of any X; on Y;. That is, we assume
the variable sets (Z, X,Y") satisfy the following partial causal ordering,

Z<X=<Y, (14)

where Z < X = Z; < X for every (i,5) € {1,...,1} x {1,...,q}. Fig. 6 shows several
causal DAGs consistent with this ordering. Although we are yet to discuss unobserved con-
founding, the examples in Fig. 6 are compatible with the framework we develop here. Note
that, when X € V is a single treatment, one can trivially find sets Z,Y C V that satisfy
(14) for any causal DAG over V. The only notable exclusion is the dynamic treatment
regime, where outcomes affect subsequent treatments (e.g., X; — Y; — Xj).

The partial ordering (14) lets us straightforwardly extend the framework laid out in
Section 3. The basic idea is to specify Assumption 1 and Assumption 2 but on a set of
counterfactuals {Y (z, 2) }5 »exxz under both levels of treatments X and covariates Z. These
counterfactuals relate to the counterfactuals of interest {Y (x)},ex via an additional ‘nested
consistency’ property, which is commonly used when combining counterfactuals with graphs
( ; ;

). In particular, our counterfactual assumptions are as follows.
Assumption 3 (Counterfactual Cocycles with Covariates). Let {Y (¥, 2)}(z,2)exxz satisfy:
1. Consistency: (i) Y(X,Z) =as. Y and (ii) Y(z,Z) =a5 Y (2)
2. Ezchangeability: {Y (z,2)} )L (X, Z)
3. Counterfactual Cocycle: Y (z,2) =as. T(z ) () (Y (@', 2),V(z, 2/, 2,2') € X*x 72

We stress that these assumptions do not further restrict the causal structure implied by
(14). They simply provide a compatible potential outcomes representation which lets us
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Figure 6: DAGs consistent with ordering in (14) and Assumption 3. U is unobserved.

formalize counterfactual transports in this setting. Note that Assumption 3.1 and 3.2 imply
the well-known ‘strong ignorability’ criteria used in the potential outcomes literature,

Y(X) =as Y and {Y(2)lpex IL X | Z . (ST)

The assumptions identify Py, via the adjustment formula: E[h(Y (z))] = E[E[R(Y) | X =
z, Z]] ( ). However Assumption 3.1 and 3.2 are stronger than (SI) as they addi-
tionally identify Py, .y = Py|x—; z—.. In terms of the implied causal graphs, this precludes
any direct confounding of Z <+ Y, but does allow confounding within each block Z, X, Y and
between Z <> X (see Fig. 6). The main benefit of precluding confounding between Z <+ Y
is it lets us reduce the problem of recovering a coupling over counterfactuals {Y (z)},ex,
to the problem of estimating transports {T(%Z)’(x/,Z/)}(mvz)@gxz between conditional distri-
butions (Py|x—z 7—2)z 2exxz (which we show how to do in Section 5). This is because, by
the nested consistency Assumption 3.1.(ii) and counterfactual cocycle Assumption 3.3, the
transports {7, .) (2/,2) } (2,2)exxz determine the (stochastic) coupling over {Y () }zex:

Y(7) =as. T(x,Z),(z’,Z)(Y(x/)) . (15)
Implied Causal Model Since Assumption 3 is equivalent to Assumption 1 and As-
sumption 2 but on an augmented set of ‘treatments’ X := (X,Z), all results in Sec-

tion 3 apply equivalently to the set of transports on {Y(z,2)}( .)exxz- In particular,
the set of admissible transports must satisfy (ID), (PI) and (DA) w.r.t. Py x 7. This in
turn implies that T, .y (7 .1y =as. foz© f;z, for some injective f; . : Yo — Y and that
Y =as. f(X,Z,&), &y LL(X, Z). Therefore, any joint BCM over the variable blocks,

Z §z
V=|X —a.s. h(&Za&X) = F(é) ) (16)
Y f(h(éz.¢x), &2, &)

is again consistent with the cocycle T'. Different choices of h and reparameterizations of
the noise (£7,&x,&y) all correspond to the same cocycle by noise invariance. Thus, coun-
terfactual cocycles provide the minimal structure needed to recover the required couplings
and counterfactuals, without committing to a full SCM for (Z, X), noise distribution P¢, or
enforcing the noise to factorize within the blocks (Z, X) and Y.

The SCM equivalence makes clear that even if Z 1L X (i.e., Z are not confounders, as
in Fig. 6, right), if Z#Y including them explicitly in the model formulation may still be
required to satisfy the injectivity assumption implied by the cocycle. That is, we may only
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have dim(supp(P¢)) < dim(supp(Py)) after including enough measured causes Z of Y. This
is an important distinction from estimating marginal causal effects, where conditioning on
unnecessary covariates can increase estimation variance ( ).

4.2 Cocycle Parameterization and Refinement

TMI Restrictions Following the analysis in Section 3.2, for identifiability we restrict our
parameterizations of cocycles to TMI maps. That is, we use constructions of the form

T(x7z)7(x/7z,)(y’) = fm,z o f;',lz’(y,) where f%Z € Gowmr - (17)

In the present context, this essentially imposes a known partial causal ordering between the
outcomes, i.e., Y1 < --- <Y, and implies an underlying acyclic SCM,

1/vj —a.s. fj(X7 Za Y<j7£Y,j)7 €Y,jJ-|—X7Z . (18)
While this is not the only possible restriction that can achieve identifiability, it is commonly
used in the literature ( : : )
and, as discussed in Section 3.2, guarantees a well-defined transport whenever Y7, ...,Y), are

continuous on RP. In practice, we parameterize the coboundary map f(z,z,y) = fz.(y)
using classes of autoregressive flows on Y (Table 1), with flow parameters conditioned on
the values of z, z. Implementation details are in Section 7.

Incorporating Causal DAGs If G is a known causal DAG over V', we can additionally
restrict the transports to reflect the sparsity of the direct effects. In particular, if Yj,(;) C
(X, Z,Y;) are the parents of Y; in G, then the SCM is of the form

Y =as. fi(Ypag): €vii)s Sy lLX, Z.

In Section 7, we discuss how we practically constrain the coboundary map to reflect this
sparsity. The main idea is to use TMI maps with masks reflecting the structure of the DAG.

4.3 Estimating Causal Quantities with Cocycles

Any cocycle parameterized as in (17) trivially satisfies (ID) and (PI) on all of Y. Thus,
all that remains is to enforce (DA) w.r.t. Py x 7 and use the resulting cocycle to estimate
causal quantities. Here we overview our proposed procedure, deferring details on how to
estimate the cocycle itself to Section 5. In short, while our parameterizations mirror that of
flow-based SCMs, our estimation procedure is centered entirely on the cocycle and avoids
specifying a latent base distribution. This lets us take advantage of the invariances of
counterfactual cocycles. In what follows, we define X := (X, Z) for convenience.

Cocycle Estimation Rather than specifying a base distribution I@’g and learning a flow
to the conditional as f; : ]13’5 — IP’Y' %_z» we directly target the transports between the
conditionals, as T3 3 = fz o f;? : IPY' ez P IP’Y‘ %—z- We do so by minimizing a tractable
empirical analogue to a distributional discrepancy in the (DA) property,

UT) := Bz zrnb g D(Py 3o (Tr2) 4Py =)’
In Section 5 we derive this estimator in detail, and show that, under general conditions,

the consistency of this estimator does not depend on any distributional assumptions that
follow from the (true) latent noise £ (see Theorem 11 in Section 5).
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Causal Quantity Estimation Rather than using the abduct-act-predict procedure in
Section 2.1, which may require sampling from a prior or posterior base distribution, we
use the cocycles to directly impute the counterfactuals of interest. In particular, given an
i.i.d. dataset {Z®), X®) Y(i)}?:1 ~ Pz xy, we can impute for each unit the counterfactual
outcomes at treatment levels x1, ..., x,, using (15) and the consistency property:

YO>21),.... YO @m)} = T, 20y, x0,20) (YD), s T, 200),(x00 200y (YD)}

The imputed counterfactuals can then be used to estimate causal quantities via stan-
dard empirical and/or nonparametric techniques. Below are some examples using empirical
averaging and kernel density estimation with smoothing kernel K:

Average Effect: IE[Y(I’) -Y(0)] = E Z(Y(i) () — ?(i)(O)), (19)
True Harm Rate: P(Y(z) - Y(0) < 0) = 1 zn: 1{YD(z) — Y@ (0) < 0} (20)
=1

Density of Effect: ﬁy(x)_y(g) (y) = Z Kx(f/(i) (z) — y @ 0) —y) (21)

One can also condition such quantities on covariates W C Z to examine effect hetero-
geneity. For this, one can replace the empirical averages in (19)-(21), with weighted averages
estimated nonparametrically. For example, the conditional THR can be estimated as

P(Y(z) =Y (0) < 0| W = w) Z ;i (w)1{Y O (z) — YD(0) < 0} (22)

where &;(-) are smoothing weights estimated via nonparametrically regressing 1{}7(") (x) —
Y(i)(O) =< 0} on W using e.g., Nadaraya-Watson or RKHS regression. While we note
that nonparametrics can suffer from slow rates of convergence in high-dimensions, in causal
inference W is typically a low-dimensional (e.g., 1d or 2d) set of interest.

5 Cocycle Estimation

To leverage any benefits of directly modeling counterfactual cocycles, we require a tractable
way to estimate them without making further assumptions on Py|y 7. This task is non-
trivial for general flow classes beyond simple additive models, where one cannot recover the
cocycle merely by regressing Y on functions of X and Z. In what follows, we develop our
estimation procedure from first principles, establish its asymptotic properties, and demon-
strate its performance on the problems in Example 1.

For notational simplicity, we henceforth write X in place of the augmented variable
(X, Z), since including covariates does not affect any of the results below.

5.1 Targeting (DA) via Distributional Discrepancy

Given a parameterized model F for the coboundary map f : (z,y) — f.(y) of the cocycle
T, a natural estimation criterion is to minimize an expected distance that enforces (DA)
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across all conditionals. In particular, denoting by D a divergence or metric on P(Y), the
set of distributions on Y, the criterion evaluated at f € F is

bo(f) = Ex xinpx D(Pyx, (fx o f}})#PwX/)Q . (23)

where Py x = P(Y € «|X ) is treated as a random probability measure on Y, and fx a
random function Y — Y. When the cocycle is identifiable from a model F (e.g., F C Fryr—
see Section 3.2), then by definition £y admits a minimizer that is almost-everywhere unique.
Unfortunately, evaluating ¢y requires knowledge of Py |y, which defeats the purpose of
modeling only the cocycle. Our aim is to modify this objective in a way that bypasses the
need to estimate conditional distributions, without harming identifiability. To that end,

we choose D to be the Maximum Mean Discrepancy (MMD) ( ), which
induces the following loss in terms of the cocycle T’
6o(T) = Ex xrpy [[E[(Y)]X] — E[(Tx,x (Y X, X, - (24)

Here (X,Y) 1L (X', Y") are independent copies, ¢ : Y — Hy, is a feature map to a reproducing
kernel Hilbert space (RKHS) H;, associated with a positive-definite kernel k : Y2 — R, in
the sense that ¥(y) = k(y,-). As long as the kernel k is characteristic (i.e., the mapping
Py — E[(Y)] is injective), this is a metric on P(Y) ( ). Popular
characteristic kernels include the Gaussian kernel k(y, y’) = exp(—\||y — ¢/[|3), and Laplace
kernel k(y,y’) = exp(=A|ly — ¥/||}). While one could attempt to estimate £y from data via
nonparametric conditional mean embedding estimation ( ), we will modify the
MMD objective so that it can be estimated using simple empirical averages.

Modifying the Objective We start by using the standard identity E[||W |3, ] = I[E[W][|F,, +
Tr[Covy, [W]] for any RKHS-valued random variable W € Hy, with E||W|]? < oo (
), where

Covyy, [W] :=E[(W —E[W]) ® (W — E[W])] € By(Hy)

is the covariance operator, By (Hy) is the set of trace-class operators on Hy, and Tr: By (Hy) —
R is the standard trace functional. Applying this identity to the norm inside the outer ex-
pectation in (24) with W = (YY) —E[¢(Tx x/(Y')|X =z, X' = '], we get,

UT) := bo(T) = Te[Cov[(Y)]] = E(xr x y)~xaryy [0(Y) = E[(Txx (Y))1 X, X]|I3, (25)

Note that minimizing lis equivalent to minimizing £y, so we can simply work with { instead.
This removes one of the two conditional expectations in (24). Now, to remove the other
conditional expectation, we pass the expectation over X’ inside the norm, yielding

UT) = Exyymeyy 19(Y) = B[ (Tx (V) X]II3, - (26)

Using the reproducing property of k (i.e., k(y,y') = (¢¥(y),¥(y'))n,, the resulting loss
function can be expressed as an expectation of a real-valued function,

E(T) = E(X,Y),(X’,Y’),(X”,Y”)N]P’ny(k(}c Y) + k(TX,X’<Y/)7 TX,X"(Y”)) - Qk(Y, TX’X/(Y/))) (27)

We note that exchanging the expectation over X’ with the norm does not guarantee to
preserve the minimizing set. However, below we prove that any minimizer 7™ of ¢ in a set
of G-valued cocycles satisfies (ID), (PI), and (DA) almost surely.
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Theorem 8 (CMMD Identifiability). Let T' satisfy (CC) w.r.t. {Y(x)}zex and T € Tg,
where Tg := {1y : f € Fg} is the set of cocycles constructed from coboundary maps in Fg.
Then, any T* € arginfrer (T) satisfies (ID), (PI) and (DA) w.r.t. Pyx, (Px ® Px)-a.s.

The restriction to G-valued cocycles can be relaxed, but as with earlier results lets us
avoid certain complexities working with monoids. An immediate consequence of this result
is that, whenever 7 C Fg,,, (or in any other situation in which F is identifiable), the
minimizer of ¢ identifies the counterfactual cocycle T*. Going forward, we refer to the
objective (27) as the CMMD loss (short for Cocycle MMD). Intuitively, one can view
CMMD as minimizing the (average) error between true and predicted counterfactuals in
Hilbert space, {1(Y ("))}, where the predicted counterfactual at 2(%) is just the average

transformed embedding (Y (z(®))) := %Z#i w(Tz(i)@(j)(Y(:pU))).

Tractable Empirical Analogues The only expectations in (27) are over Py y. There-
fore, given data D,, = {(X@, Y} ~jig Py y, one can replace the population expectations
with empirical ones. This gives rise to the following empirical V-statistic and U-statistic
estimators for ¢ (dropping all terms independent of T'):

2 ¢ i) (0 1 < ij) ik
: T>=—;zk<y<>,n< J>>+$zkof; ) o
2 1, Z k
V(T = Zk (1)) n(n—l Z k() vy (29)
17’5] z;é];ék

where Y( b =Tx() x) (Y ()). Both loss functions £Y and ¢Y can be used to optimize flow-
based cocycles via any gradient-based algorithm (e.g., ADAM) and model select between
different flow classes. Implementation details are in Section 7.

5.2 Properties of CMMD Estimation

We now analyze the theoretical properties of CMMD estimation. We start off by verifying

that both empirical analogues £, /U converge to ¢ at y/n-rate under general conditions.

Proposition 9. Let {(X®), Y())}7

', ~iid Px)y. For any cocycle T'" and bounded kernel k,
we have LY (T) = U(T) +c+ Op(n~ 2

1
), where ¢ € R. The same holds for /Y.

We now turn to asymptotic analysis of the resulting estimators. For this, we work under
standard parametric assumptions on the model class, and assume the cocycle is identifiable
and that the kernel is sufficiently regular (as satisfied by typical kernel choices).

Assumption 4. (CMMD Consistency)
1. Compactness: © is a compact subset of R,
2. Continuity: 0 — Ty .. (y) is continuous for every (z,2’,y) € X* x Y.
3. Identifiability: M = argmingeg £(0) # (. 01,00 € M = Ty, =Ty, (Px @Px y)-a.s

4. Kernel Regularity: The kernel k is continuous and bounded with sup,, . [k(y,y")| < 1.
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Under these conditions, we have the following strong consistency result based on the
U-statistic (29). By standard theory (e.g., Theorem 5.2.9 in )
analogous results hold for the V-statistic (28).

Theorem 10 (CMMD Strong Consistency). Let {(X® YO}~y Pxy and 6, €
argmingeolY (0) be a measurable minimizer. If Assumption / holds, then

inf [0, — 0lls =20 a.s.
e M a.s.

Moreover, 36y € M such that Ty, nzpe Ty, a.s., for Px @ Pxy almost all (x,2',y').

Remark 11. When the data are generated by a BCM'Y = f(X,£), the only condition in
Assumption 4 which may be depend on P¢ is the identifiability criterion Assumption 4.3.
However, this condition only requires that the underlying cocycle T s almost-everywhere
unique, rather than the parameterization 6y. Since there is at most one (a.s. unique) TMI
map transporting between two distributions on RP (Theorem 6), as long as F C Fg,,,, and
the model is well-specified, Theorem 10 must hold for any BCM with function f. Thus, like
the cocycle itself, our CMMD estimator also enjoys an invariance to the noise distribution.
In contrast, likelihood-based estimators for the flow from a base distribution can fail to
converge for certain noise distributions, as discussed in Section 2.1. Likewise, in Section 6.4
we will see conditional-quantile based SCM estimators can be biased under dependent noise.

Under the following additional regularity conditions we obtain /n-consistency of the U-
statistic estimator to the minimizing set. We expect an analogous result for the V-statistic.

Assumption 5. (Additional Regularity for \/n-rate)

1. Lipschitz Cocycle: There exists a measurable function Ly : X? x T — Rsq with
E[L7(X, X', Y")?] < oo, such that for all 6,0' € ©,

HTG,ac,ac’(y/) - TG;,m,w’(y/)HQ < LT(xv .73/, y/) He - HIHQ (PX ® PX,Y)_Q'S'
2. Kernel Deriative Regularity: 0k : (y,y') — Vyk(y,y') is continuous and bounded.

3. Local Strong Convezity: There exist ¢,d > 0 such that whenever infgcpr |0 — 6|2 < 6,

> ¢ i —0||>.
IVot(@)ll2 = ¢ int 16 —6'll2

Theorem 12 (y/n-Rate of CMMD). Let {(X®, YD1 ~iq Pxy and 6, € argmingee €Y (6)
be a measurable minimizer. Then, under Assumption J and Assumption 5, we have

Jof ([0, = 0]l> = 0, (n~1?).

We note the kernel regularity condition is satisfied by popular characteristic kernels
such as the Gaussian kernel. The local strong-convexity condition plays an analogous role
to the classical positive-definite Hessian assumption used to obtain /n-rates in the unique
minimizer setting (i.e., that V2£(6p) = Aminly when M = {6}) ( ).
Indeed, in this case a first-order Taylor expansion of V¢ around 6 yields the gradient bound
IVL(0)|l2 > Amin ||0 — 6o]|2 for 6 near 6. We assume the bound directly as it requires only
first-order derivatives and is more natural when there are multiple minimizers.
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Figure 7: Estimated treatment effect distributions for Example 1 using flow-based cocycles
with CMMD. Left: density under mixed-tailed noise. Right: CDF under discrete
noise. Cocycles accurately recover both, unlike flow-based SCMs in Fig. 2.

5.3 Demonstration on a Toy Example

We conclude by demonstrating the performance of our CMMD estimator on Example 1.
We assume access to samples {X @, Y(i)}?gqo ~ Px y and specify cocycle models using the
same architectures as the flow-based SCMs in that example. We train each model using
the CMMD loss, choosing the best architecture by 2-fold cross-validation. We impute the
counterfactuals {V?)(0), Y®(1)}7_, using the cocycles, and estimate the treatment effect
density and CDF by (Gaussian) kernel smoothing and empirical averaging, as described in
Section 4.3 (see (20) and (21)). CMMD implementation details are in Section 7 and the
optimization routine in Section 8.1. Fig. 7 shows the estimated treatment effect density for
the mixed-tails noise case (left) and CDF for the binary noise case (right). In contrast to
the poor performance of flow-based SCMs (see Fig. 2), our approach accurately recovers
both distributions. This reflects that (a) our procedure does not require specifying a latent
noise distribution, (b) the cocycle is well-specified by a simpler (MAF) flow architecture,
and (c) the CMMD estimator is robust to the (true) noise distribution.

6 Robustness and Simplicity of Counterfactual Cocycles Versus SCMs

In this section we analyze the advantages of modeling counterfactual cocycles in contrast to
SCMs, by studying a formal invariance of cocycles under model reparameterizations. This
invariance means that centering the modeling and estimation process around the cocycle
is more robust to mis-specification, can greatly simplify estimation, and in many cases lets
us sidestep the problems with flow-based SCMs identified in Section 2.1. We also discuss
advantages over recently proposed SCM-based transport methods using conditional quantile
estimation ( ; ).
In what follows, we restrict attention to the simplified setting

Y —a.s. f(X7 5)7 f_LLX,
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and compare modeling a counterfactual cocycle T" versus a bijective generating mechanism
(BGM) (f,P¢). While a full SCM specifies the entire joint system (cf. (10) and (16)), when
the treatments X € V are pre-defined and X < Y one can always set X = £x and estimate
the noise distribution via the empirical distribution of X. In this case, the substantive
difference between the two approaches lies in how the conditional law Py |x is modeled.
The same arguments apply with (X, Z) in place of X under the more general framework in
Section 4, so we need not explicitly distinguish between treatments and covariates.

6.1 Noise Invariance of Counterfactual Cocycles

It is known that BGMs can only be identified up to noise automorphisms (
). In particular, let Y =, f(X,&), where £ € £, (L X, and f, := f(z,+): € —
Y is bijective. Then, letting Aut(€) be the group of bi-measurable bijections on &, we have

f(@,8) = flz,gog(§)) VgeAut(E).

Defining f9) : (z,€) — f(z,g(£)), it is clear that {(f\ ,g# Pg)}geAut(g) is an equivalence
class of BGMs that all generate the same conditional distribution Py|x—each one with a

different noise parameterization Pg-1(¢). However, while the structural function f () depends
on the choice of g, the corresponding cocycle does not, since

Tyw = fuo fly = frogog tofl, foranyge Aut(f), z,2’ € X. (30)

This has implications for whether a model is well-specified. To illustrate, fix an under-
lying generating mechanism ( f*,]P’Z). With a flow-based SCM, one specifies a fixed base

distribution I@’g and a class of functions, F := {f: X x £ — Y}. In this case, the model is
well-specified if there is some f € F such that fw#]P’g = fr i for each z € X. Denoting
T(IF’S,IF%) as the set of invertible transports from P} to IP’g, this is true if and only if:

(I) There exists h € T(Pz, IP’g) such that f*™ e F.

On the other hand, the cocycle approach specifies a function class of the same type, F :=
{f: Xx & — Y}, whose elements will be used to construct candidate cocycles as T}, ,» = fz o
f;?. The model F is well-specified if there is some f € F such that fzof;ﬁ =T, = f;of;f
By (30), it is easy to see that this is true if and only if:

(IT) There exists h € Aut(E) such that f*") e F.

Since T(IP’Z,I@%) is a strict subset of Aut(&), flow-based models with fixed I@)g and function
class F are well-specified for a strictly smaller set of generating mechanisms than cocycle
models that use the same function class F. The following example demonstrates how cocycle
modelling can avoid the tail and support mis-specification problems outlined in Section 2.1.

Example 3. Suppose that Y = f*(X,£*), where £* € £ C R?, X € R and

F(X €)= AX +€, € ~130,1) @ (QU(—§7—5)+§U(%,§)> ~
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Figure 8: Ilustration of invariance of cocycle complexity to noise distribution. Counter-
factual transport (gray arrows) 77 from samples of Py () (blue) to Py () (or-
ange) for structural model Y( ) = Az + & where (i) € ~ N(0,I) (left) and (ii)
E~t300,)® (3U (-3, -4)+ 53U (2, %)) (right). IfIf”g = N(0, I) is used as a base
distribution to learn the BGM ( 7 IP’g) there is no continuous bijection Pg = Py ()
in case (ii). In contrast, the direct transport 77 0(y) = A + y is a simple linear
map, regardless of the true noise distribution P¢. Intuitively, one can view T}
as a structural map from ‘base’ distribution Py (g) to Py ().

Suppose we model this mechanism using base distribution I@’g = N(0,7) and a class of
autoregressive Lipschitz diffeomorphisms F C Fg.,,, as in SOTA flow-based SCMs. In
this case, both the tails and support of IP’Z are mis-specified. By the theory of TMI maps
(Bogachev et al., 2005), the only h € T(IP)E,I@’E)) that results in f*» € Fryy is the map
h(€) = (h1(&1), ha(£2)) where hy and hy are the quantile transforms from IAP& to ¢, and ]13’52
to P¢, respectively:

A~

h () = sign(&)

3(1—1— (29(£):3,3)) . {—§+2<I>(£2), () < 1L,
v} @1 W=

Here I is the regularized incomplete Beta function and ® is the CDF of N(0,1). A is not
Lipschitz and hy has a discontinuous jump. Therefore, f**) does not lie in F. In contrast,
the cocycle T ./ (y) = A(x — ') +y does not depend on P} or I@’g and can be modeled using
the set of linear maps Ny = {f(2,&) = Az + & | A € R?} C F, since M e Frn for
h =id € Aut(€). This is illustrated on Fig. 8.

The same concept applies to Example 1. In that example, one has f* € FLIN.SCALE =
{f(x,€) = o(x)e | o(z) = B + a, (a, B) € [-1,1]?}, a set of linearly-parameterized scale
transforms, but using fixed I@’g € {N(0,1),Lap(0,1)} results in a non-affine, non-Lipschitz
flow for the mixed-tailed noise design, and no well-defined flow for the binary noise design.
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For our last example, we show the dependence structure between the coordinates of &
can also induce mis-specification problems for SCMs, but again has no effect on the cocycle.

Example 4. Consider again the set-up of Example 3, but now where there is a single latent
cause of both outcomes:

{1‘( —a.s. 55 ~ N(07 1) .

In this case, using a factored Gaussian base distribution I@’g = N(0, I5) for the SCM admits
the correct marginals for the noise, but since supp(IP’Z) is a lower-dimensional set than

supp(]@g) we have T(PE,I@’E) = @. In contrast, the true cocycle T is unaffected by the
particular dependence structure in ¢ and can still be well-specified using the class Frin =
{f(z,8) = Ax + €| A € R?} C F, since we still have f*(4) ¢ 7.

The above examples all serve to demonstrate an underlying point: any properties of the
conditionals (Py|x—,)zex inherited from the (true) noise distribution P¢ need not be learned
by the counterfactual cocycle, since it is invariant to this distribution. As a practical impli-
cation, we can employ popular Lipschitz flow classes (e.g., Table 1) to model counterfactual
cocycles while often avoiding the mis-specification issues that arise in flow-based SCMs.

6.2 Counterfactual Cocycles as Minimum Complexity SCMs

Another way to view the mis-specification robustness of cocycle modeling is as a ‘minimal
complexity’ property of counterfactual cocycles. In particular, the cocycle can be con-
structed using any coboundary map from the equivalence class of SCMs { f (9)}9e Aut(€)- We
are therefore free to choose a representative f* that minimizes a given notion of functional

complexity (e.g., Sobolev norm). Since each map f (9 corresponds to a base distribution P(¥)

such that Py x—, = ( f;,(;g ))#]P’(g), counterfactual cocycles are therefore no more complicated

than the minimal complerity SCM, induced by an ‘optimal’ noise distribution P*.

This means we may be able to use simpler flow-based model classes F than otherwise for
the coboundary map of a cocycle, while remaining well-specified. Using a simpler class of
models can improve finite sample performance via reduced estimation variance. In practice,
we will cross-validate over a hierarchy of flows of increasing expressivity to adapt to the
underlying complexity (see Section 7).

Conditions for Stricter Cocycle Simplicity It is natural to ask under what conditions
a counterfactual cocycle can be constructed using a strictly simpler model class than for an
SCM with a fixed base distribution Iﬁ)g. Below we provide an exact characterization when
the simplicity of a model class is measured by its size. In what follows we choose the noise
space to be & = Y without loss of generality®, so that each f, is bijective Y — Y.

Recall from Section 3.2 that whenever the maps (f;).cx are exactly invertible on Y,
they lie in a transformation group G on Y. In this case, we call the coboundary map (i.e.,
f) G-valued. The smallest group containing (f;)zex is the subgroup generated by them,
which we denote Gy := (f; : © € X). The set of all Gs-valued coboundary maps is denoted

Fi,. This model class naturally reflects the smallest model class that is guaranteed to

4. Choosing £ =Y just corresponds to a reparameterization of the BGM, since by construction there exists
a bijection h : Y — £. Moreover, the automorphism groups are conjugate: Aut(€) = Aut(Y), with
g € Aut(€) if and only if ho go h™' € Aut(Y). Thus, working with £ = Y entails no loss of generality.
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Figure 9: Illustration of Theorem 13 (minimum cocycle complexity). The blue region P(G)
shows the set of distributions reachable from the base distribution Py |x_q under
the group G = (T : x € {0,1,2}). The family (T%,0)ze0,1,2) defines a cobound-
ary map f € Fg for the cocycle T, via f(z,y) = Ty 0(y). If each T} ¢ is composed
with some g ¢ G, the base distribution shifts to I@’g = (9)#Py|x=0, which lies
outside P(G). The smallest group transporting to all (Py|x—;)ze{0,1,2} 15 then
(GU{g}), which is strictly larger than G and has reachable set P((G U {g¢})). Since
enlarging the group enlarges the associated function class of coboundary maps
(ie., Fo & Fiaufg))), starting from Py|x_q (or any Py x—,) yields the smallest
possible transformation group G and hence the smallest associated model class
JFg in which the cocycle can be represented.

be well-specified for f, when the dependence of the function f on z is not known. Note
that size of this model class Fg, is controlled by the size of Gy: if two coboundary maps
f1 and f2 generate groups Gy, and Gy, with Gy C Gy,, then Fg n & Fey,- Altogether,
this implies that if Gy C Gy,, then in a certain sense f; can be modeled with a smaller
(i.e., simpler) model class than fs. For an intuitive example, let G, := Diff*(Y), the set
of diffeomorphisms on Y with k continuous derivatives, and Gy, := Diff!(Y). Then, Fg £
contains only those functions in Fg fs that are at least k-smooth on Y.

Below we show that, out of all equivalence class members ( f (9)) geAut(y) that can be used
to construct a given counterfactual cocycle, the construction f} := T} ,, from Theorem 3
induces the smallest possible set Fg,, and so can be modeled using the smallest class.

Theorem 13 (Minimum Cocycle Complexity). Let {1, v}z arex satisfy (DA), (ID) and
(PI) with respect to Py|x. For each x € X, define fy := Ty, and suppose each fr: Y —Y
is bijective. Let G§ = (fy : x € X) and G = (frog:xeX), for any g € Aut(Y). Then,

(i) ]:Gf - f@f(g) and (i) fo - fo(g) Vg Gy .

Since choosing fr := T} ., corresponds to the base distribution I@g = Py|x=z0 (i.e.,
(f2)#Py|x=z, = Py|x=,) and g is arbitrary above, Theorem 13 implies Py x_,, for any
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x € X is always an ‘optimal’ base distribution. Moreover, any choice of base distribution
If”g such that ]13’5 # g#Py|x—, for all g € Gy« must require a more complex coboundary
map than can be used to construct the cocycle. This result may seem strange, since Fig. 5
illustrated an example where the valid set of noise distributions under a function class F did
not include either conditional. However, when the class F is specified via a transformation
group, the sets of reachable distributions from any two conditionals Py | x_,, Py|x—,, either
do not intersect (if the group is too small), or are identical (if the group if large enough to
map between them). Fig. 9 illustrates the minimum complexity result in more detail.

As a concrete application of this result, in Example 3, we saw that fi € (R%,+) , the
group of shifts on R?. Since there IP’E = Py|x—o, we know that f*(z,y) = Az+y is a minimal

complexity coboundary map for the cocycle. Moreover, if I@’g is not a translation of Py x—_
then the structural map from this base distribution will necessarily be more complex. Note
that the transport in Fig. 8 corresponds to this map for = 1, since 11 0(y) = f*(1,y).

6.3 Robustness of Cocycle-based Approach to Causal Quantity Estimation

Since counterfactual cocycles are well-specified under strictly milder conditions than flow-
based BCMs, any procedure for estimating causal quantities that depends only on the
cocycle is naturally more robust. For instance, consider any estimand of the form

v(z) = E[p(Y(x),Y(0))], for some p: R? - R,

(e.g., those in (19)-(21)). Suppose the true cocycle T' can be constructed by a flow param-
eterized on R, fo € F = {fs : 6 € © C R?}. Now, let § be any estimator of fy from
{X @), Y(i)}?zl. Our approach uses the cocycle to empirically estimate the causal estimand
via the imputed counterfactuals

n

1 i i
*ZP b ax ()),Tém’X(i)(Y())).
=1

3

Under standard empirical process theory arguments on 6 — Ep(Ty, 5 x (Y), Tp, 0,x (Y))
(e.g., see ), if & & 6% then we have 4(z) 2 ~(z). By contrast, the
abduct-act—predict (AAP) estimator by Monte Carlo sampling from a flow-based BCM is

FAA () ;Z (fe D), 506" )), {€OY ) ~iia Pe.

Although one can appeal to equivalent empirical process conditions for this estimator, one
can still have 444F (z) 4, v(z) even if the estimator for the cocycle is consistent, 0 —p 6.
This is because, while fg, € F, we may have f ¢ F, where f is the conditional flow from
Pg = Py|x (e.g., if ]P’g has a mis-specified tail and support—as in Example 1 and 3).

As we showed in Section 5, our proposed cocycle estimator actually ensures 6 —p Oo
under more general conditions than existing estimators which use a base distribution to
estimate the flow parameters, giving our approach an additional source of robustness.
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6.4 Comparison to SCM-based Transport Methods via Conditional Quantiles

SCMs combining conditional-quantile estimation techniques with causal DAGs have re-
cently been used to construct counterfactual transports in fairness applications (
; ). These are situated in a longer line of work in
causality that uses the quantile transform (e.g., ;
; ). The methods in
) and ) start from an SCM with independent, uniform noise,

ij:a.s‘ f_](X?Ypa(j)7£])7 §]NU[071] VJE{l,,p}

In their context, X is a “sensitive” source attribute (e.g., sex, race) to be manipulated, and
Y1,...,Y, are downstream outcomes that follow a known causal DAG. The main idea is
that, under the independent, uniform noise assumption, f; coincides with the conditional
quantile function, f;(z,Ypa(j),&s) = Quypaii) (&;), of the conditional law P)/'J.|X:x’ypa(]_):ypa(j).
It can therefore be estimated using standard quantile regression techniques (

). To generate counterfactuals one can recursively compute for each

node in the DAG,

gj(x/) = Qx’,gjpa(]-)(z’) o Fx,ypa(j) (y])’ v j = 17 Y 4

where Foypas) 18 the conditional CDF given X = x and the factual parent values y,,(;) and
Upa(y) (2') are the counterfactual values of the parents obtained in previous steps. In this way,
each' node is upda‘c'efi by a map of the form T(wlfgpa(j))v(xaypa(j)) = Qxl7gpa(j)o Faypaiiy which is
precisely the conditional OT map between ]P)yj|ypa(j):ypa<j>7 x—p and ]P)yjlypa<j):gpa<j)(x/)7 X—gp
( ; ). The resulting procedure recently has been
branded sequential-OT ( ), since it decomposes the transport into a
collection of conditional OT maps.

When the true noise variables (£ j)§:1 are independent, the sequential-OT transports co-
incide with the (TMI) counterfactual cocycle. However, the conditional-quantile approach
requires estimating the mapping (Qz)% : U[0,1]7 — H?:l Py, ¥y, X =2> and so still im-
plicitly commits to a particular noise distribution for the purposes of estimation. Thus,
in principle, this approach can suffer from similar mis-specification problems as flow-based
SCMs, depending on the exact function class used to learn the quantile function. This is
somewhat mitigated by using nonparametric CDF estimation techniques, but in either case
fails to exploit the minimal complexity of counterfactual cocycles.

A potentially more serious limitation is that the resulting transports generally do not
coincide with the true counterfactual cocycle when the noise variables are dependent, thus

resulting in biased, inconsistent estimators. This is demonstrated in the following example.

Example 5. Consider the three-variable SCM with treatment variable X,
X ~N(0,1), T=X+&, Y2=Y1+&,

We assume (£1,&2) ~ N(0,%,), Var(§;) =1, Corr(&1, &) = p, and (&1,&2)1LX. In this case,
the true counterfactual cocycle reduces to a joint shift

T;’,x(yla?ﬂ) =(n+ 4, y2+A4A), A=z —zx
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By contrast, the sequential-OT procedure applies conditional quantile maps node by
node. For Y7, since (Y7]X = x) ~ N(z, 1), the quantile transform gives ¢;(z’) = y; + A. For
Ya, since (Y2|Y7 = y1) ~ N((1 4 §)y1, 1 — p?/2), the conditional quantile transform gives

~ N 2 4 a
Pa(a) = (L+ )i (2) + /1 -5 271 (&) =p2+ 1+ HA.
Combining these transports together gives the sequential-OT map
Tiii(yhy?) = (yl + Aa Y2 + (1 + g)A)v

which coincides with 77, = only when p = 0. The discrepancy arises because the TMI
map between joint laws Pyl,yﬂ x does not factorize into the TMI maps of the conditionals
Py, | x @Py,|y; when 1, &2 are dependent. By targeting the joint cocycle directly, our method
avoids this issue and can recover the correct transport regardless of p, even when using the
DAG structure to sparsify the cocycle architecture.

7 Implementation Details

In this section, we discuss implementation and optimization details for counterfactual co-
cycle models parameterized by autoregressive flows. Formal algorithms are in Section B.

7.1 Flow-based Cocycle Parameterizations

As discussed in Section 3, a natural modeling choice for the coboundary map (z,y) — f.(y)
of a cocycle is to use conditional normalizing flows ( ;

). Each flow is the composition of (i) a conditioner 79: X — A, mapping inputs
x to a vector of flow parameters A, and (i) a bijector gy € G that transforms y:

foo) = 9ry0)¥) & Toww (¥) = 9ryw) © 95y (V)

The conditioner 79 can be any learnable function class—linear model, MLP, convolu-
tional network, or transformer—so long as it maps = to valid flow parameters A. The
bijector gy can be a single transform or a multi-layer composition of such transforms that
lie in Gpp. Popular examples of such transforms are given by the autoregressive flows in
Table 1. Table 2 presents several cocycles constructed using simple transforms and existing
autoregressive flows, together with the lower triangular restrictions under a known partial
ordering of the variables in Y used to preserve identifiability. When further constraining
these flows using a known causal DAG, we follow ) and specify the
inverse map f; ! as the (forward) autoregressive flow with a mask on the adjacency ma-
trix reflecting the sparsity of the DAG. When using a single layer this prevents spurious
correlations from being induced by the architecture (see ) for details).

7.2 Optimization and Model Selection

CMMD Implementation We optimize all flow-based cocycles using gradient descent
on our empirical CMMD losses (V/U-statistic) introduced in Section 3. Our default kernel
choice for CMMD is the Gaussian kernel k(y,y’) = exp(—A|ly — ¢/||?), where the bandwidth
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Table 2: Example cocycle parameterizations with classes of TMI maps. Here G denotes
the transformation group of the cocycle. MAF = Masked Autoregressive Flow

( ); NSEF = Neural Spline Flow ( ).
Transformation group G =~ Conditioner output ~ Cocycle Ty . (y) Restriction for identifiability
Shifts (R?, +) a; € R? Y+ ay — ag None
GL, (RY) A, € GLL(RY) A ATy A, lower-triangular, [A;],;; > 0
GA 4 (RY) (Az,ay) Ay + Ap A7y — ay) A, lower-triangular, [4,];; > 0
Diff(RY) N G MAF parameters 6, MAF™'[4,/] o MAF[4,](y) None
Diff(RY) N Grmr NSF parameters §,  NSF™'[4,/] o NSF[4,](y)  None
A is chosen using the median heuristic on the observations {Y () o ).

For gradient-based optimization, since both evaluation and gradients have a computational
complexity of O(n?), at each iteration we subsample B < n datapoints, and then approx-
imate VolU (resp. VolY) with Vyl¥ (resp. Vgl%). This stochastic optimization approach
has been used for kernel-based estimators in several works ( ;

) and, in our case, estimates /¥ Wlthout
bias and £/ with a bias of order 1/B. We use the ADAM optimizer ( )
with a default batch size is B = min(n, 128). Algorithm 1 in Section B presents pseudo-code
for this procedure, for the V-statistic.

Model Selection As established in earlier sections, a key advantage to modeling coun-
terfactual cocycles rather than an SCM with a base distribution, is that we maximize the
‘chance’ of remaining well-specified using a simpler conditional flow (i.e., one contained in a
smaller transformation group G). We therefore advocate training a hierarchy of flow-based
cocycle classes with increasing transformation group expressivity, such as those presented
in Table 2—coupled with conditioners of matched or increasing capacity. In practice we use
K-fold cross-validation to do this. Algorithm 2 in Section B demonstrates the procedure.

8 Experiments

We now implement counterfactual cocycles in a range of simulations and a real application,
and compare against state-of-the-art SCM and OT methods for recovering counterfactual
couplings. Code can be found at https://github.com/HWDance/Cocycles.

8.1 Noise Ablation in Flow-based SCMs

We begin by comparing counterfactual cocycles to equivalent flow-based SCMs in a simple
linear causal model. The goal of this experiment is to assess the robustness of our estimation
approach to the underlying noise distribution P¢, and to illustrate how our method can
leverage the simplicity of the underlying cocycle, in contrast to the flow that arises from
pushing forward a fixed base distribution Py.

Experimental Set-up We generate n = 1000 points from a linear structural equation
model Y = BX 4 ¢ under different settings of P.. We implement cocycles trained using
both CMMD-V and CMMD-U losses, and benchmark them against flow-based SCMs which
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Method P: = N(0,1) Pe = Ga(1,1) P =1,(0,1) Pe =1G(1,1) Pe = Rad(1/2)
Interventional KS

ML-G 0.015 £+ 0.007  0.081 £ 0.041 0.121 +0.079 0.208 £+ 0.162 0.405 £ 0.069

ML-L 0.055 £ 0.010 0.074 + 0.036 0.110 £ 0.069 0.120 £ 0.090 0.415 £ 0.067

ML-T 0.018 £+ 0.008 0.079 + 0.040 0.029 + 0.007 0.075 £+ 0.031 0.412 £+ 0.062

CMMD-V  0.028+£0.009 0.027 4 0.008 0.027 4+ 0.009 0.027 + 0.008 0.271 £ 0.031
CMMD-U 0.010 +0.004 0.012 + 0.005 0.008 £+ 0.003 0.009 + 0.004 0.268 4 0.008

Counterfactual RMSE

ML-G 0.035+£0.035 0.277+0.118 113.667 +341.875 114.946 +147.841  0.326 £ 0.258
ML-L 0.036 £ 0.028 0.258 £0.073 97.745 £ 351.815  112.300 £ 165.014  0.480 £ 0.294
ML-T 0.033 £0.031  0.270 £+ 0.097 0.044 £ 0.053 29.872 +41.628 0.391 +£0.307

CMMD-V  0.035+0.026 0.020 +0.015 0.040 + 0.031 0.028 + 0.024 0.017 £ 0.019
CMMD-U  0.040+0.027 0.022 4+ 0.016 0.033 + 0.027 0.027 + 0.023 0.014 £+ 0.011

True Architecture Selection %

ML-G 96% 14% 0% 2% 2%
ML-L 100% 2% 1% 0% 0%
ML-T 98% 8% 94% 0% 0%
CMMD-V 100% 100% 100% 100% 98%
CMMD-U 100% 100% 100% 100% 100%

Table 3: Mean + SE of the interventional Kolmogorov—Smirnov distance (top block) and
counterfactual RMSE (middle block), averaged over 50 trials, plus the percent
of correct architecture selections (bottom block), for SCM Y = X + ¢ under
do(X = 0) across different noise laws. “ML-" denotes ML flows with Gaussian
(G), Laplace (L) or Student-¢ (T) bases; “CMMD-" denotes our cocycle estimators
(CMMD-V/U). Boldface marks the top two performers per column.

estimate the bijective generative mechanism (f,[P¢) via maximum likelihood, using differ-
ent base distributions (N(u,0?), Lap(u,0?), t, (i, 0?)) with learnable parameters. For all
methods, we perform 2-fold cross-validation across a range of flow architectures of increas-
ing complexity: (i) a linear flow f,(§) = 0z + &, (ii) an additive flow f,(§) = mg(z) + &,
(iii) masked autoregressive flow ( ) and (iv) a neural spline flow
( ). All flows except (i) are parameterized using MLP neural networks
with 2 layers and 32 hidden nodes per layer. Each model is trained for 1000 epochs using
the ADAM optimizer in PyTorch with default hyperparameters and a learning rate 0.01.
All results are averaged over 50 random seeds.

Results Table 3 shows performance results for different true noise distributions under a
hard intervention do(X = 0). The top block shows the Kolmogorov-Smirnov (KS) distance
between the true and estimated marginal distribution of Y'(0); the middle block shows the
RMSE between the true and estimated counterfactuals Y'(0) for the units in the dataset
{X® y@}r_ " and the bottom block shows the fraction of trials on which the true linear
architecture was selected by each method. When the true noise is Gaussian, all methods
performed similarly well for both metrics, and selected the true linear architecture in almost
all cases. This reflects the fact that the base distributions are either well-specified (i.e.,
Normal and Student’s t) or close enough to well-specified (i.e., Laplace). The performance
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Figure 10: Mean (circle), (25-75) percentiles (solid line) and (10-90) percentiles (dashed
line) of absolute error in treatment effect Y(X + 1) — Y(X) = 1 for different
estimation methods in a linear model Y = X + £ under different noise designs,
when fixing the flow to be the true architecture f,(§) = Sz+¢. Dashed horizontal
line = 5% error. Black edges = best two methods on average.

of the cocycle-based approach is roughly invariant to the true noise distribution, reflecting
the robustness of our estimation approach to this aspect of the data generating process. The
one exception is interventional KS for P¢ = Rad(1/2), which is naturally higher since the true
interventional distribution lies on two points and so is very sensitive to imperfect matching.
In contrast, the performance of all other methods deteriorates drastically when the noise
distribution does not match the specified base distribution, and a more complex flow is
chosen in an attempt to correct for this mis-specification. As a result, our cocycle estimators
performed best for all non-Gaussian noise distributions. For counterfactual RMSE, the
performance gain is in some cases more than two orders of magnitude.

For the interventional KS, the performance gap was greatest when P¢ € {t;(0,1),
IG(1,1), Rad(1/2)}, reflecting the fact that the base distributions either have mis-specified
tails or support in these cases (except the Student’s-t base in the t1(0,1) noise case). For
Pe = Ga(1,1), there is still a substantial performance gap, since the flow-based methods
need to use a very complex neural spline flow in order to effectively learn the base distri-
bution, which results in worse finite sample performance. For counterfactual RMSE, all
methods compute counterfactuals using the same formula: Y (0) = foo f il(Y). Thus, the
performance gain using cocycle targeting here purely reflects the robustness of our CMMD
estimator and that we do not need a more complex flow to compensate for a poorly matched
base distribution.

Extension To analyze how the CMMD estimator performs when all architectures are
fixed, in Figure 10 we also produce counterfactual RMSE results under a shift intervention
X +— X + 1, when restricting all flow architectures to be the true (linear) architecture
f2(€) = B + €. Note that in this case, Y (X +1) — Y (X +1) = 5 — 3, so counterfactual
error is isometric to cocycle estimation error. For this we compare the CMMD estimator
against ML estimators with the Gaussian and Laplace base distributions (i.e., f2 and /¢;
regression), as well as a recently proposed MMD-based estimator for conditional generative
models: Universal Robust Regression (URR) ( ). The latter bears
similarities with the CMMD estimator, with the exception that it requires specifying the full
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Figure 11: Left and middle left (Confounded Chain): Mean + SD (20 trials) of error in
estimated average incremental effect (left) and incremental counterfactual ef-
fect (middle left) of second treatment, for observed units {Y¥(0)}?_, in control
group. blue = sequential optimal transport ( ),
= optimal transport (Brenier maps) ( ), = Masked
Autoregressive Flow cocycle. Under the chain DAG, Sequential-OT becomes
biased as correlation strength p := Corr(£;,&2) increases, whereas the MAF-
cocycle does not, due to the robustness of our estimation procedure. Right and
middle right (Non-additive Triangle): Mean + SD (20 trials) error in estimated
incremental counterfactual effect (middle right) and inconsistency in counter-
factual predictions Y (2) when imputing (right) for observed units {Y®(0)}7,
in control group, via (a) indirect To; o 119 and (b) direct T transports. 6
controls degree of non-additivity in true transport maps. As 6 increases, OT
performance degrades and transport inconsistency increases, reflecting underly-
ing model incoherence.

generative model (i.e., a base distribution). For URR we optimize the conditional estimator
Eq. (5) from ( ), using m = n Monte Carlo samples from IP’?,| e
The kernel is chosen identically to CMMD. Both CMMD estimators estimate $ within 5%
error on average across all noise designs, reflecting its noise-robustness. By contrast, all
other estimators perform poorly (i.e., > 50% error) on at least two noise distributions.

8.2 Confounding and Path-Consistency Ablation in Transport-based Models

In this experiment, we compare counterfactual cocycles against OT-based approaches and
assess how estimation accuracy and path-consistency varies under different assumptions.

Experimental Set-up Suppose we have collected data under a randomized controlled
trial which tests two treatments and a control, i.e., X € {0,1,2}. We observe two outcomes
Y := (Y1,Ys) for n = 500 patients under control, {V*)(0) ? ., under treatment X = 1,
{Y®(1)}?2  and under alternative treatment X = 2, {Y#(2)}?2, ). We aim to estimate

i=n>’ i=2n
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the incremental effectiveness of treatment X = 2 by estimating transports Ty 1,702,712
between each state, and using them to compute the contrast Y (2) — Y (1) for each unit. For
ease of demonstrating path-consistency issues, we only do this for the control group units.

We consider two generating designs to isolate different weaknesses of competing methods:
(i) a chain SCM Y] = X + &1, Yo = Y1 + & with (&1,&) ~ Lap(0,p117 + (1 — p)I); and (ii)
a non-additive SCM Y = 1X + L(X )& with £ ~ Lap(0, I2) and

w=(p 1), =% 7). ="' 1)

In design (i) we vary the noise correlation p € [0,1]; in design (ii) we vary 6 € [0, 1], which
intuitively controls the degree of non-additivity in the true transport maps. The former lets
us analyze how noise dependence affects estimation performance of sequential-OT methods,
while the latter lets us analyze how non-additivity affects path-consistency of OT methods
(in general, OT maps are coherent between distributions which are shifts of one another).
For the cocycle we use a masked autoregressive flow ( ), with
a two-layer MLP conditioner (32 nodes per layer) for the dependence Y7 — Y>. We use a
separate flow per treatment level z € {0, 1,2}, i.e., f; := MAF[0,] with 0, = (6o, 01, 62)[z].
We optimize the cocycle to target (DA) w.r.t. Py, 5| x, assuming the causal ordering X <
Y1 < Ys. Training details are as in Section 8.1.
We compare our flow-based cocycle against OT with quadratic cost ( ;
; ), implemented using the network-simplex
solver and barycentric projection via the POT package, following ). These
methods directly estimate T, ,» between each pair of treatment levels without enforcing
path-consistency (PI). When the true transport maps are not additive (as in design (ii)),
the resulting pairwise maps may be mutually inconsistent. We also compare against the
sequential-OT approach discussed in Section 6.4 ( ;

), which factorizes the joint transport into a set of (1D) conditional transports
estimated via the conditional quantile transform. We estimate the conditional CDFs using
(Gaussian) kernel smoothing, with bandwidths chosen via the median heuristic (

). Sequential-OT is expected to guarantee (PI) in the large sample limit, since
each coordinate map satisfies (PI) in this limit. However, given our analysis in Section 6.4,
we expect performance to degrade as the noise correlation increases (as in design (ii)).

Results For design (i), Fig. 11 reports the RMSE in the estimated average contrast
E[Y(2)-Y(1)|X = 0] (ATE) (left), and the RMSE in the counterfactual effect Y'(2) — Y (1)
(CFE) for control group units (middle left), over different noise correlation levels (averaged
over 20 trials). Increasing the noise correlation p leaves cocycle and OT performance es-
sentially unchanged, while sequential OT shows steadily increasing bias in both ATE and
CFE. This is to be expected given the analysis in Section 6.4. Note, by default we impute
counterfactuals using 71,9 and 15, i.e., (Y(1),Y(2) = (T1,0(Y (0)), T2,0(Y (0))).

For design (ii), Fig. 11 reports the RMSE of the CFE again (middle right) as well as
the estimated RMSE between the predicted counterfactuals Y (2), when imputing them
from the control group units via the direct transport 750, and the indirect composition
Ty 0Ty (right). Note that each approach is equally valid here, as to impute both Y (1)
and Y (2) for control-group units two out of three maps are always needed. However,
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each pair may induce different couplings over all three states. As expected, increasing
the ‘non-additivity’ parameter 6 leads to large increases in both counterfactual RMSE and
path-inconsistency for global OT. This shows that the incoherence of OT transports and
resultant non-identifiability problem generalizes beyond the 2D Gaussian example consid-
ered in Section 2.2. Sequential OT is less affected here, but its performance remains inferior
to the MAF-cocycle.

8.3 Performance on SCM Benchmarks

We now assess how our method performs on causal benchmarks used in the SCM literature,
against state-of-the-art flow-based SCMs.

Experimental Setup We consider linear and non-linear variants of the following bench-
mark SCMs used in previous work ( ; ): (i) Triangle,
a 3-node SCM with a dense causal graph; (ii) Fork a 4-node SCM with a sparse causal
graph; and (iii) 5-chain, a 5-node SCM with a chain structure. The linear and non-linear
mechanisms for Triangle, Fork and 5-chain can be found in ). We also
implement a two-variable SCM (2var (1in): Y = X +¢, 2var (nonlin): Y = sin(X)+¢).
Unlike in previous implementations where all noise distributions were Gaussian, we set
each node in the SCM with a different noise distribution, enabling us to assess perfor-
mance in a more challenging and realistic setting. In particular, we set & = N(0,1) and
€42 = {IG(1,1),Rad(1/2), 1N(—/3/2,1/2) + IN(V/3/2,1/2), Ga(1,1)}.

We implement flow-based cocycles on (X,Y) = (V4,V~1) with the CMMD-V loss,
against several state-of-the-art flow-based SCMs: (i) CAREFL ( ),
which uses affine autoregressive flows to learn Px y (i) CAUSALNF ( ),
which extends CAREFL to arbitrary flows but enforces a single (abductive) flow layer to
prevent the flow from enforcing spurious edges in the adjacency matrix, and (iii) BGM
( ), which trains a conditional flow to match Py |x and uses the

empirical Py. For all methods (including ours) we assume the causal ordering is known, but
the DAG is unknown. Hence, all autoregressive network architectures are dense. We use
the same architectures, training and cross-validation procedure for all methods as in Sec-
tion 8.1. However, note CAREFL is restricted to affine architectures, and we additionally
cross-validate over Gaussian and Laplace base distributions for the baselines.

Table 4: Mean £ SD of KS;, and KScr on the linear SCMs.
Method 2var (lin) triangle (lin) fork (lin) 5chain (lin)
KSint KSCF Ksint KSCF Ksint KSCF Ksint KSCF

BGM 0.13+£0.07  0.194+0.12 0.37£0.05 0.06+0.01 0.05+0.07 0.61+£0.07 0.144+0.05 0.06 £ 0.01
CausalNF 0.31+£0.11 0.24+£0.10 0.44+£0.05 0.06+£0.02 0.044+0.02 0.66+0.09 0.14£0.02 0.06+£0.01
CAREFL 0.40£0.04 0.15+£0.14 0.43+£0.05 0.06+0.01 0.194£0.01 058+0.10 0.13£0.02  0.06 £0.01
CocycleNF  0.03 +0.02 0.04 +0.04 0.23+0.19 0.02+0.01 0.024+0.01 0.19+0.23 0.024+0.01 0.03+0.01

Results For each method we evaluate the learned distribution of V51(0) and the dis-
tribution of the current policy-effect V=1 — V51(0) under the intervention do(V; = 0), by
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Table 5: Mean £ SD of KS;ut and KScr on the nonlinear SCMs.

Method 2var (nonlin) triangle (nonlin) fork (nonlin) 5chain (nonlin)
KSint KScr KSint KScr KSint KScr KSint KScr
BGM 0.12+0.07 0.27£0.13 0.414+0.07 0.09+0.05 0.04£0.01 0.59+0.08 0.07£0.03 0.41+£0.12

CausalNF 0.30£0.11 0.26 +0.08 0474+0.04  0.23£0.08 0.07 £+ 0.06 0.61 £+ 0.09 0.06 £+ 0.06 0.24 £0.16
CAREFL 0.44+0.04 0.22£0.15 0.47 £ 0.06 0.22 4+ 0.09 0.194+0.01 0.514+0.21 0.17+0.04 0.60 £0.25
CocycleNF  0.04 +0.02 0.13+0.05 0.28+0.13 0.20+0.16 0.08+0.05 0.20+0.24 0.05+0.02 0.20=+0.09

computing the average marginal Kolmogorov-Smirnov (KS) distance:
1 < 1 <
KSint = -— Z Dxks (Fv;(0)s Fv0)):  KScr = 11 Z Dxs (Fv;—v;(0) Fv,-v;(0))
j=2 j=2

Here F is the CDF, which for flow-based cocycles is estimated empirically on counterfactual
samples, and for baselines is estimated via the abduct-act-predict procedure (see Section 2.1)
Tables 4 and 5 report the mean + SD results from 10 trials. Cocycles achieves the best
KSint and KScp in all SCMs except one (Triangle-nonlin for KScr and Fork-nonlin for
KSint). The performance gap is generally greatest when the true DGP is linear, reflecting
our method’s ability to be well-specified with simpler selected architectures. Out of the
baselines, CAREFL generally performed worst, which likely reflects its restriction to affine
flows. BGM generally performed best out of the baselines. This is to be expected, as under
the intervention do(Vy = 0), the only part of the flow used at test time is the conditional
component f : (x,y) — f.(y) on Y := V54, which is directly optimized by BGM.

8.4 Application: Counterfactual Effects of 401(k) Pension Plan Eligibility

As an application to real data, we use counterfactual cocycles to estimate the impact of
401(k) eligibility on net financial assets, using the well-known economic dataset studied in
). The dataset contains n = 9915 households with variables
(Y® DO Z(i))?zl. Y(® € R, is net financial assets, D% € {0,1} is a binary indicator for
eligibility to enroll in a 401(k) savings plan, and Z() € Z C R are covariates measuring
demographics and earnings, as described in ).

We investigate the hypothesis that the effect of the 401(k) pension scheme on wealth
accumulation follows a “rich get richer” phenomenon—i.e., whether those that benefited
most from the 401(k) scheme are those who would otherwise have most wealth in the first
place. To answer this question, we estimate how the full distribution of the treatment effect
Y (1) — Y (0) varies across quantiles of (i) income levels I € Z, and (ii) net financial assets
under the no-treatment scenario Y'(0). The conditional distribution P(Y (1) — Y'(0)|/) will
help us to determine whether individuals who are richer in income are able to take better
advantage of the 401(k) pension scheme distributions, through their ability to save. The
conditional distribution P(Y (1) — Y (0)|Y(0)) will help us to determine the extent to which
those who benefit most are those who were better off already without the scheme.

We work under the assumptions laid out in Section 4.1 on counterfactuals {Y'(d, z) :
(d,z) € {0,1} x R%}. We estimate flow-based counterfactual cocycles on these counterfac-
tuals, cross-validating over different architecture design choices and using the same training
settings as in Section 8.1. We use the estimated cocycle to impute the counterfactual
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Figure 12: Estimated conditional distribution of the treatment effect Y(1) — Y (0) (i.e.,
change in net financial assets) given quantiles of (i) Y'(0) (i.e., net financial
assets under the no treatment scenario) and (ii) income, for different cocycle
models. NF-Cocycle = normalizing flow based cocycle. Mean = conditional
mean, and a% interval = middle a% of the conditional distribution.

outcomes Y'(1) := Y(1,Z),Y(0) := Y (0,Z) and use them to estimate the required condi-
tional distributions using nonparametric smoothing, as described in Section 4.3. We use the
Nadaraya—Watson estimator with a Gaussian kernel for the smoothing weights. The kernel
bandwidths are learned by performing gradient-descent on the K-fold cross-validation loss
from regressing the dependent vector {1(Y (1) — Y (0)) > ¢; : i € [m]} on Y(0). Here t; is
chosen as the i/m empirical quantile of Y (1) — Y'(0). We use the ADAM optimizer with a
learning rate of 0.01 and 1000 gradient steps.

The estimated conditional distributions of the treatment effects are displayed in Fig. 12.
Both distributions are consistent with the “rich get richer” phenomenon. In particular,
the effect is generally largest for those who would have had greater net financial assets
without access to a 401(k) pension scheme in the first place. While the majority of the
10th percentile of the distribution barely see a positive effect, the majority of the 90th
percentile of the distribution see increases of > $20,000. The story is somewhat similar
when conditioning the effect on income levels (i.e., those with larger incomes see greater
increases in net financial assets), albeit with larger treatment effect variance per quantile.

The fact that the treatment effect Y (1) — Y (0) is on average increasing over the quantile
7 of Y/(0) implies that the effect of treatment on the quantile, ET'Q(7) = Qy1)(7) —Qy(0)(7)
is also increasing over 7. Increasing profiles of the latter have been reported in previous
studies ( : ), supporting our findings.

9 Conclusion

In this work, we introduced a general framework for modeling transport-based couplings
over counterfactuals. Such couplings are essential for estimating measures of treatment risk
and heterogeneity. To overcome the incoherence and identifiability problems of previous
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transport-based approaches, our key idea was to model a set of transports between counter-
factuals that satisfy the necessary algebraic properties to induce valid couplings. We called
the resulting set of transports a counterfactual cocycle, given the connection to cocycles in
dynamical systems ( ).

We characterized the structure of all counterfactual cocycles, and showed that each
cocycle is equivalent to a class of injective SCMs. This equivalence enables parameterization
via the same autoregressive flows used in flow-based SCMs, and identifiability under a known
causal ordering. Crucially, however, cocycles are noise invariant: they depend only on the
transports, not on the choice of latent noise distribution. This allows estimation to be
centered directly on the transports, eliminating the need to model the noise law. Moreover,
the flows required to represent a cocycle can be significantly simpler than those needed for
the corresponding SCM, yielding models that are both well-specified under milder conditions
and less prone to mis-specification.

To estimate cocycles efficiently, we proposed a new estimator based on minimizing
the maximum mean discrepancy (MMD) between the true and predicted counterfactual
marginals under the transports. In contrast to maximum likelihood approaches used in
traditional flow-based SCMs, the estimator is noise-robust: its consistency does not rely on
the properties of the underlying noise distribution. These advantages translate into strong
empirical performance: across synthetic benchmarks and a 401(k) eligibility study, cocycle
models outperformed both OT-based methods and flow-based SCMs.

One interesting direction for future research is how to construct identifiable classes of
counterfactual cocycles without knowledge of the causal ordering. A promising avenue could
be to combine the algebraic structure of cocycles with the optimal transport criteria, yielding
valid transports that satisfy the causal principle of counterfactual similarity ( ).
It also remains to be seen how one could extend the framework to settings with more severe
forms of unobserved confounding, where counterfactual marginals are not conditionals.
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Charitable Foundation. BBR acknowledges the support of the Natural Sciences and En-
gineering Research Council of Canada (NSERC): RGPIN2020-04995, RGPAS-2020-00095,
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Appendix A. Supplementary Proofs
A.1 Proofs for Section 3

Proof [Theorem 2] For the first direction, suppose {T} ;/}.2ex satisfies (ID), (PI) and
(DA) for a given Py x. Now, fix the (standard Borel) probability space (Y, B(Y), Py |x—s,),
where B(Y) is the Borel o-algebra on Y. We can therefore define the random variable
Y (zo) : Y — Y as the identity map, which is Borel measurable. By construction, Y (z¢) ~
Py|x—z,- Now, define the random variables

Y(z) =Ty 2,(Y(z0)), VzeX

Note by measurability of each T, ;,, they are well-defined. By (DA) we have ?(:U) ~ Pyix—p
for each x € X, which is the marginal distribution requirement of admissibility. To show
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(CC) holds almost surely, we note by (ID) and (PI) that Ty, 20T 2y = Ty = id, Py x—s,-
a.s. This means that

Troz (Y (2)) 1= Tugz © Tooao (Y (20)) =as. Y(20), Vo € X.
Applying Ty 5, to both sides and noting that = and 2’ are arbitrary gives
T 2o © Tag (?(x)) =as. L'z (Y(l'o)) = ?(x/) , Vz,2' € X.

By (PI), the LHS = Tm/w(?(x)) a.s. Thus, the transports are admissible.

For the reverse direction, let {7}, '}, 7cx be admissible w.r.t. Py |x. In this case, there
exist random variables {Y (2)}gex with Y (z) ~ Py x—, and Y (%) =as. Ty o (Y (z)) for all
z, 2" € X. Below we show that this implies (DA), (ID), and (PI) hold:

(DA) For any z, 2’ € X, the fact that Y (z) =a.s. Txyx/(l;(:c’)) implies Y (z) =4 Ty (Y ().
Since Y(z) ~ Py|x—, this means (T% )4 Py |x—2 = Py|x—s-

(NI) For any z € X we have }7(36) = Tmm(f/(w)), 80 Ty =1id Py x—j-as.

(CPI) For any z, ', 2" € X, we have
Tz”,:v’ © Tm’,x(?(x)) =a.s. T:v”,;v’ (?(l'/)) —a.s. ?(l'//) =a.s. Tx”,x(?(l‘))
SO, Ta}”,a}’ ) Tx/’x = Tx”,x IPHX:x—a.S.

Proof [Theorem 3] For each z € X set fi := Thao : Y — Y, where g € X is arbitrary.
Now, let Y, be the set of full Py|x_,,-measure on which Ty, », = id. Since (Y, B(Y)) is a
Polish space and Py x_,, a probability measure on this space, it is a standard fact that any
measurable subset A C Y with Py |x_,,(A) = 1 contains a Borel subset B C A also with
Py|x—z,(B) = 1. Thus, we choose Yq as the Borel subset of Y, of full Py|x_, -measure
and note that Yo C Y, as required. Let f, := fy l'vo: Yo — Y be the restriction of f, to
Yo. It is Borel measurable since Yy is a Borel subset of Y. Furthermore, by (ID) we have
Ty, © fo = idy,. Therefore, f, : Yo — Y is a Borel injection. The Lusin-Souslin theorem
then implies that the set f.(Yo) is Borel and that the map Ty, 2 [, (v,): fz(Yo) — Yo is also
Borel measurable (see Corollary 15.2 in ))-

Now, we will extend Ty, 21, (v,) appropriately to define a measurable left inverse e
Y — Yo of fi. To that end, choose yo € Yo and define a total map f, : Y — Y, by

oo Tas). ye LYo,
fo o) {ym y & fu(Yo).

As f.(Yq) is a Borel set, f;7 is Borel measurable (with codomain Yy equipped with the
trace o-algebra B(Y)|y, := {YoN B : B € B(Y)}). Moreover f; o f, = idy, by (ID). To
show the cocycle identity, note for any 2’ € X and y € f,/(Yo) we have [ (y) = Tuy2(v).
Since Py|x—z,(Yo) = 1, (DA) implies Py x_,/(fr(Yo)) = 1 and so we can write

+ —
Jz o fx/ = Taz,zo o Taso,a:’ = Tx,a:’ ]P)Y|X:x’_a“s‘
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where the last equality holds by (PI). Since z and 2’ are arbitrary this proves the result. B

Proof [Theorem 5] We prove that conditions 1 and 2 of Theorem 4 hold. For 1 (existence)
we construct the required cocycle using a coboundary map from Fg. To that end, fix zg € X
and note by (ID) and (PI) that any Py |x-adapted, G-valued cocycle T': X2xY — Y satisfies

Tx,xg o T:co,:c =id, PY|X:m_a'S- (31)

Since Tz, € G it has an exact inverse T 2 1 Y = Y. Applying this inverse to both sides

of (31) gives T;;o =Tiye Py|x=p-a.s. Thus for every z,z’ € X we can write

Tyow = foofi! Py|x—y-a.5., where fi =T, . (32)

Thus, 1 holds for f* € Fg defined by f*(z,y) = Ty z,(y). Now, for 2 (uniqueness), we first
show that 7" is another Py y-adapted and G-valued cocycle if and only if

Tx,x’ = fx (e} b;l o ba}’ (e} fg;,l , ]Py|X:x/—a.S., A xT, x/ eX y (33)

for some {b; }rex C Aut(Py|x—s,)|c. For the first direction, we fix T and note that since
(DA) holds, for any = € X we have

(Tﬂ?,fﬂo)#PY\X:xo - PYlXZI = (T:t_,alzo)#PY|X=x - PY\X:JUO
and the same holds for T'. Thus, setting fx = Twm and recalling that f, := T ;,, we have

Py|x=zo = (fx_1>#]P)Y|X:z = (f:c_l)#]P)Y|X:x ;
= Pyxeay = (fo " 0 fo)#Py|xzzy = (fa " 0 f2)#Py|x=ap -

So, by := fx_l o fr € Aut(Py|x—y,)|c and likewise for byl=flo f.. Now, note that

feofit=feobitobyoft, (34)

for any 2’ € X. Moreover, following the same steps used to prove 1, we know Tzw/ = fx o f;l
Py|x—-a.s. Combining this with (34) and noting z,2" € X were arbitrary proves (33).
Conversely, note that for any {b;},ex C Aut(Py|x—s,)lc, the construction Ta;’m/ = fy o0
bloby o f;l satisfies (33) and defines a valid Py x-adapted, G-valued cocycle.

Thus, the set of G-valued, Py x-adapted cocycles take the form (33) for any {b;}.ex €
Aut(Py|x—s,)|c- The cocycle is therefore (a.s.) unique if and only if

foofut = faoby obyoft Pyx_yg-as. (35)
= bl oby =id  Pyjx_z,-as. (36)

for (Px ® Px)-every z,2" € X and for all possible collections (b;)zex € Aut(Py|x—z,)|c-
The latter holds trivially if Aut(Py|x—s,)lc € [idlp, (_, - To see that it holds only if
Aut(Py | x—z,)lc C [id] suppose by contradiction that Aut(Py|x—,,)|c < [id]

Py|x=zq> Py|x=zq"
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Take any Borel set A € B(X) such that Px(A4) = 1/2 and g € Aut(Py|x—z,)|c N[id]§

Py|x=ag"
Using these elements, we can set

g:x €A, . . .
by = and T, . = fz 0 b;l o0by o f:C_,l, Vz, 2’ € X
id: z € A

Then, T : (z,2',y/) — Tz@/(y’) is a valid Py y-adapted, G-valued cocyle, but (36) does not
hold w.r.t. (by, by) for (Px ® Px)-every z, 2’ € X. Thus, uniqueness of the cocycle holds if
and only if Aut(Py|x—,,)|c C [id] .- This completes the proof. |

Py x=¢
Proof [Theorem 6] By Theorem 5, it suffices to prove that Aut(Py|x—z,)|crw € [id]py x_,,
for arbitrary zo € X. To that end, fix 9 € X and for ease of notation put P := Py|x_z,-
To prove the result, we first prove the following lemma.

Lemma 14. Let v be a Borel probability measure on R. If S : R — R is measurable,
non-decreasing and satisfies Syv = v, then S(y) =y, v-almost surely.

Proof [Theorem 14] Write F' for the distribution function of v. Since S is monotone
increasing and preserves v, we know by the Portmanteau Lemma (e.g.,

, Lem. 2.2) that Syv(A) = v(A) for every closed A € B(R). Since the family of sets
{(—o0,t] : t € R} are closed, we have the following equalities for every y € R:

F(S(y)) =P(Y < S(y)) =P(S(Y) < S(y)) =P(Y <y) = F(y)

Where the second inequality follows from the Portmanteau Lemma under measure preserv-
ing S and the third inequality follows since S is monotone increasing. Now, let Q(a) =
inf{t € R : F(t) > a} be the generalized quantile function. It is a standard fact that
Qo F = id v-a.s. Since S preserves the null-sets of v by definition, this means that
QoFoS=5vr-as. Since QoF oS = QoF =id v-a.s., this immediately implies the result.
|

Now we use the Lemma to prove the main result by induction. Let T' = (T1,...,T)) €
Grmr be measurable and satisfy TxP = P. We show Tj(y) = yx P-as. for k =1,...,p.
For the base case k = 1, the first marginal P() is a probability measure on R. Because T}
is non-decreasing and (T1)x P! = PM)| Lemma 14 forces Ty (y1) = y1 PM-as.

For the inductive part, assume Tj(y) = y; P-a.s. for each j < k, where k € [1,p — 1]
is arbitrary. Let P%) .= Po 711_,1 be the projection of P onto the first k£ coordinates (i.e.,
mk(Y) = (Y1, ..., yk)). Fix y< and let P,_, be the regular conditional distribution of Y
given Y<j, = y<p. As the first k coordinates of Y are already the identity, Ty satisfies

(Ter1)#Pyoy, = Pyeyy © = Tiy1(y<k, v) non-decreasing.
Applying Lemma 14 to v = P,_, yields Tj11(y) = yx+1 P-a.s. By induction, 7' =id P-a.s.

Therefore, any T' € Gty with T4 P = P belongs to the P-a.s. equivalence class of the
identity, so Auttyvr(P) C [id]p. Because 2y € X was arbitrary, the statement holds for

44



COUNTERFACTUAL COCYCLES

every conditional law Py |x_,,, completing the proof. |

Proof [Theorem 7] Assume the counterfactuals satisfy Assumption 1 and (CC) with co-
cycle T. Then by Theorem 3 we have Y (z) =a5 fz© ;C(Y(:n’)) with f; = Ty 4, [y, for
any x,2’,z9 € X, and f;F the (measurable) left inverse of f,. Now, fix zg € X and set
§ = [ (Y(x0)) € Yo, so that Y(z) =as fe(§) for every x € X. By Assumption 1.2
(exchangeability), we have X 1& We next define f : (z,y) — fz(y) and note since
T : (z,2',y) — Ty (y) is Borel measurable so is f. By Assumption 1.1 (consistency)
we have Y =, f(X,§). Lastly, by Theorem 3 f, := f(x, «) is injective for every z € X.

Conversely, if Y =,5 f(X,&) with £ € Yo, £1LX and f(z, ) : Yo — Y injective for
every « € X, then by definition of counterfactuals in an SCM we have Y (z) =55, fz(£), with
fo = flz,¢) ( ). Since f, is injective on Yy, it admits a left inverse f,7. We
construct this left inverse so that the map f* : (z,y) — f. (y) is Borel measurable.

To that end, define the embedding F': X x Yo — X x Y, F(z,e) = (z, f(x,¢)). Since F
is Borel and injective, by the Lusin—Souslin theorem (see Corollary 15.2 in ),
the image G := F(X x Yg) is Borel in X x Y and the inverse F~! : G — X x Yy is also
Borel. Now, let 7y, be the projection onto Y and fix e* € Y. We define f*: X x Y — Y
as

e*, (xz,y) ¢ G.

Note that f* is Borel and V (z,¢e) € X x Yy we have (z, f(x,e)) € G, so f1(xz, f(x,e)) = e.
Since € € Yg, we have ;7 (Y (2)) =as. fif © f2(£) =as. & Composing with f,/ for any 2/ € X
gives

fH(zy) = {WYO (F(2,y), (z,9) €G,

Y(2') =as. for o £ (V(@)) =t T o (Y (2))

which verifies (CC). Now, since X 1L £, and independence is preserved under transforma-
tion, it holds that Y (z) =,s f(x,&)lLX. Moreover, Y(X) =,s f(X,&) which verifies
consistency. The measurability of T'(2/,z,y) := f(2’, f(z,y)) follows from the fact that a
composition of Borel maps is Borel. |

A.2 Proofs for Section 5
Proof [Proposition 8] First note that by the definition of 7', we have that

Py x=2(A4) = /XIPY|X:x’(T;;/{A})M(dx/)

for every probability measure p € P(X), every measurable set A € B(Y) (the Borel o-algebra
on Y) and x € X. Therefore, since we can write

2
UT) = Eaop, D (szz( ) [ By T })Px(d$/)> ~0

where D = MMD, we have T' € M := arginfp.7 ¢(T) and so M is non-empty. Now, take

arbitrary 7™ € M. Since its coboundary map f* lies in Fg, we have T; , = f; o =1 (ie.,
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(ID)) and Tj , = fro fin'o faofit = frofi ! (ie, (PI) for every z,2/,2" € X

T T

Therefore, all that remains is to show T satisfies (DA) (Px ® Px)-almost everywhere. The
fact that D is a metric on P(Y) and ¢(7*) = 0 implies the following inequalities for arbitrary
A € B(Y) and Px-almost all z € X:

Pyixs(A) = / Py o (T2 {dy/ )P ()
Xx A

— / 1y € AYPy o (T2 2 My })Px (da)
XxY

- / (T () € AYPy x—or(dy )P (d2)
XxY

— EU{T} x(Y) € 4}

Therefore, T «(Y) = f7 o ;‘(_I(Y) =d Py|x—z, for Px-almost all z € X. Defining
& = )*{1(Y) ~ P, this implies Py|x_, = (f;)#IF’z for Px-almost all z € X, which
immediately implies the result. |

Proof [Proposition 9] Note that for any cocycle T : X2 x Y — Y, £Y(T) and ¢Y(T) are
V-statistics and U-statistics of order three respectively. It is a standard fact (e.g.,

) Sec 5) that one may replace the kernel of such statistics by its symmetrized version
under S3, the group of permutations on {1,2,3}. That is, we may write

1 & ) . 1 <& , )
n i3,k (3) i<j<k

where Z0) .= (X® YY) and hp(2®, 20, z(#)) = %ZJGS:’) ﬁT(Z(U(i)),Z(”(j)),Z("(k))) is
the symmetrized version of the original kernel of the statistic:

hp(Z9, 29, 20) = —2k(YD Ty i) x50 (YD) + k(T x00 (YD), T xaw (Y E))

Now, note that by the boundedness of the kernel, hy is uniformly bounded and therefore so is

hy. Therefore, under the assumption that Z(), ..., Z(™) dp 7, by Hoeffding’s inequality for

bounded U-statistics (e.g., see Sec 5.6.2. Theorem A in )) we have £Y(T) —
Ehp(Z,2',2") = (’)p(nfé). Since f is bounded, it is known that [£Y(T) — £Y(T)| =
Op(nfé) (e.g., see Lemma 5.7.3. in )), which immediately implies £ (T) —

Ehp(Z,2',2") = (’)p(n_%) also. Note here Z, 2", 7" i P, are independent copies.

All that remains is to show that Ehp(Z, Z', Z") = {(T') + 3, where 3 is constant with
respect to T'. Since Ehp(Z,Z',Z") = Ehp(Z,Z',Z"), it suffices to show this for the lat-
ter (unsymmetrized) function). In what follows, we define u(Py|x(+|X)) := E[(Y)|X],
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1Py x (¢ X)) = Ep(Tx x/(Y"))|X], and Yr := Tx x/(Y").

Ehr(Z,2',Z")

= 2Ek(Y, Tx x/(Y')) + Ek(Tx x/(Y'), Tx x/(Y"))

= —2E(u(Pyx (« X)), t(Py,x ([ X)) 2, + E(u(Pyqx (¢ 1X)), Py x (¢ 1X)) 7,
|

= E(|ln(Py,x (+1X)) 3, —2(u(Pyx (X)), (PYT|X( X)) 3 £ I16(Pyx(+1X))113,)
= Ellu(Pyx(+|X)) — (PYT|X( 1)) 3, +
=UT)+p
Where 3 = —E||u(Pyx( |X))||3{k This completes the proof. [ |

Proof [Theorem 10] For notational convenience let Z := (X,Y), ZM, ..., z(" < Yp, and

£, = LY. We prove the result by extending known results for convergence in probability
(e.g., Theorem 5.7 in )) to the case of U-statistics and a minimizing
set M rather than a unique minimizer fy. Now, since ¥ (6) is an Order-3 U-statistic, it is
a standard fact (e.g., ) Sec 5) that we can express it as

(0) = Elhg(2.2, 2], ta S he(2), 20, 29),
(3) 1<j<k

where hg(ZW), 20 Z*)) = 5 Zae&; ho(2@@)| 7)) 7(@(k)) is the symmetrized version
of the original kernel of the statistic:

ho(Z9, 29, Z®)) = —2k(YD T} i) x5 (Y9) + k(Ty x o x) YD), Ty xo0 x0 (Y H)).

Define M = argmingeg ¢(0). We start by showing ¢ is continuous and M is compact. By
Assumption 4.4 the kernel & is continuous and bounded, so the composite hg is uniformly
bounded by a constant C' < oo and, by Assumption 4.2, continuous in §. Therefore, for any
sequence (6,,)n>1 € O such that 6, — 60, we have point-wise convergence hy, (z,2',2") —
he(z,2',2") and the uniform bound |hy, (z,2', 2")| < C. Dominated Convergence then gives

00,) =FElhg,(Z,2',Z")] — Elhg(Z,Z', Z")] = £(0).

Hence £ is continuous on © and, since © is compact, by the Weierstrass extreme-value the-
orem / attains its minimum. Therefore, M = ¢~!({mingece £(9)}) is the inverse image of a
closed set under a continuous map, and so M is closed in © and compact by the Heine—Borel
Theorem. Now, for strong consistency of én, we will show the following properties:

Well-separatedness: inf £(0) — min £(9)] = 6. >0 (37)
0€Bintyr e pp |0—0" |2>e DeO
Uniform convergence: sup |[¢,(0) — £(0)] — 0 a.s. (38)
0O

For well-separatedness, fix ¢ > 0 and set A, = {6 € © : dp(6) > } where dp(6) :=
infgrcps |0 —6'|2. By the triangle inequality, the map dys : R — [0, 00) is 1-Lipschitz, hence
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continuous. Therefore A. = d}/([e, 0)) is closed in R? and is compact since © is compact.
Now, define
% :=min £(¥), €% ;= min ((9).
Y€ YeA,

Continuity of £ on compact A. guarantees ¢° exists and, as A, is disjoint from M, ¢¢ > ¢*.
Define §. := ¢ —£* > 0. For any 6 € © with dys(0) > ¢ we have ¢(6) > ¢¢, hence (37) holds.

For uniform convergence of £, (6) to £(0), we note that F := {hg : 6 € ©} is uniformly
bounded, and continuous in @, and © is compact. Such classes are known to be Glivenko-
Cantelli and so have a finite bracketing number Njj(e, F, L*(P%) < c0) (e.g., see Example
19.8 in )). Since F is continuous it is also Borel-measurable. This along
with the finite bracketing number, means that the uniform strong law of large numbers (38)
holds for the U-statistic £ (8) (see Corollary 5.2.5 in ))-

Now we are ready to prove the consistency result. Since uniform convergence holds, for
every € > 0 there exists an almost-surely finite random index N, such that, for all n > N,

sup|ln (0) — £(0)| < 6c/2. (39)
/e

We work on the full-probability event {N. < oo} and fix any n > N.. Suppose, for
contradiction, that djs(6,) > €, so 6, € A.. Combining (39) with (37) gives

ln(0n) > 0(0,) —0./2 > 05 46./2,

whereas for any minimiser 6* € M we have £,,(0*) < £* + 0./2 by (39), contradicting the
minimality of 0,,. Hence d M(én) < ¢ for all n > N.. Since € > 0 is arbitrary, we conclude
that dpr(6,) — 0 a.s.. This proves the consistency result for 6,,.
Lastly, we transfer the result to the cocycle Tj . Since M is compact and 6 16, — 6|
is continuous, by the Measurable Maximum Theorem (Theorem 18.19 in
)) one can define the measurable function 7, := arg mingea |0, — 6| and a.s.
consistency of 0, implies [|0, — n,|| — 0 almost surely. By continuity of 7" in 0, this implies

Tén,x,m ( ) — Tnn,xl‘ (y) a.s. (40)

Since N is countable, by Assumption 4.3 we have {7}, .. (y) = Tpy e (y), ¥n € N}
(Px ® Pxy)-as., for any 6y € M. Combining this with (40) yields point-wise conver-

gence T ., (y) = Ty 2 (y) on a full-measure set, which completes the proof. [ |
Proof [Theorem 12] For notational convenience, let Z := (X,Y), ZzW, ..., z(" id Py and
note we can express the gradient of the U-statistic £, (0) := €Y () as
l = A AL
Vol (0) = 1) 1 Z Vofo(Z ).
zsﬁ]sﬁk

Now, define the symmetrized and centered function

1
H@(Z(l), 2(2)’ 2(3)) e 8 Z Vo fe (Z7T(1)7 Zr(2)> zﬂ_(g)) — VQE(G) ,

TES3
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By standard theory of U-statistics (e.g., ) Sec 5), we can express Vyl,(0) —
Vol(6) as a centered U-statistic with symmetric kernel Hp:
0, (0) — Vol(0 Hy( AL
Voly(6) — Vol(0) = (n_ln_ZZ o )
#Hék
i<k

Now, note that if Vol(0) = E[Vafe(Z1), 23 Z3))], by the Hoeffding decomposition of
Hy (e.g., ) Sec 5.1.5., Lemma A.) there exist zero-mean symmetric projections
hio(z) = E[Ho(z, 2%, 2%))],
h2’0(2(1)7z(2)) = E[Hy(z(D, 2 Z(3))] — hig(z My — h1’0(2(2))’
h379(z(1),2(2),2(3)) 9( @ Zh19 (Z - Z h?ﬁ(’z(i)az(j))’
1<i<j<3

which enables us to write

3
Hy(zW, 22, 23y :Zhl,e(z(i)) + Z hoo(z 200y 4 h3.o(z M), 22 0,

1<i<j<3

We will make use of this representation of Hy to split Vg#,, () — Vl(6) into a first-order
term and remainder term. To do this, we first show that we can swap the expectation
and the gradient so that Vpl(0) = E[Vgfe(Z(1), 2?2, Z(3)] via the dominated convergence
theorem (DCT) (i.e., Vo fg < kg : E[|rg(Z1), 2?2, Z3))|] < 00). In particular, note that by
Assumption 5.2 we have 0k < B, so by the chain rule

Vofo(ZW, 22 7)) =
—2Vgk(Y y( )vTG,X<1>,X(2) (Y(2))) + vﬁk(Té),XU),X(?) (Y(2))» Te,X<1),X(3> (Y(S)))
< 2BVyTy xa x (Y ) + BVo(Ty x) x@ (V?) +T) xa) x@ (Y?)

Similarly, by the Lipschitz cocycle Assumption 5.1, we have
v9T07X(1)’X(3)(y(3)) < LT(X(I),X(?’),X(?’)) )
Thus, we can set
KG(Z(I)a Z(2)a Z(g)) = B(gLT(X(1)7 X(2)7 Y(Z)) + LT(X(I)v X(S)a Y(3))) ’

and it is clear by the integrability of Ly that E[|ke(Z(1), Z(2), ZB3))] < co. Therefore,
the DCT applies and Vyl(0) = E[Vyfe(Z™M, 22, Z3))]. Replacing Hy in (41) with its
representation in terms of the projections, we get the standard ANOVA decomposition

VQETL(H) - vﬁg(a) =

3 S % %
n;hw(z()) mzhze ACNAL) ( > hg(Z29, 29, 2M).

1<J 3/ i<j<k
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Since E[h1 9(Z)] = 0, multiply by /n and set

910(2) =3h10(2),  Rag = vVl spig D hao(29, 20+ & 3 hae(z9, 20 20},

1<j z<g<k

This allows us to obtain the desired split into leading and remainder terms
Vi (Ve (0) — Ve ~ 2 Z 910(ZD) + Rpp. (HD)

We now bound each term accordingly. For the remainder term, it is known that, by con-
struction, hgg,hzp are P-degenerate (e.g., ) Sec 5.1.5., pp. 178.). Addi-
tionally, since © C R? is compact, the packing number is M(e, O, ||« |2) < D/e?, where
D = Diam(©). This polynomial dependence on € lets us apply Sherman’s maximal in-
equality for degenerate U-statistics ( , Corr 4):

3
2

) = op(1). (U)

sup || Ry 6]l = Op(n”~
0cUs

For the first order term, by Assumptions 5(i)(ii), {g1,¢ : @ € Us} is a parametric Lipschitz

class and so is known to be P-Donsker ( , Example 19.7). Therefore
| 75 S 00(7) ~Bigna(2)) | = 0,0 )
0cUs —1
Combining (HD), (U) and (D) yields SUDgeu, Ve (6) — ( )| = Op(n~1/2). Since

0, minimizes £, Ve, (0,) = 0 implies | VE(0,)|| = [ Ven — VE||[(6n) = Op(n~Y/2). Since
Assumption 4 holds, so does Theorem 10 and so we know that 6, € Uy w.p. 1. Local strong
convexity (Assumption 5(iii)) then yields ||V£(6,,)|| > cdy (M) for all n > N(J), where
N(0) € N. Hence, for all such n, we have

dg, (M) < [[VEU(G)| = Op(n~"?) .

A.3 Proofs for Section 6

Proof [Theorem 13] By definition of G (), one of its generators is fy, 0 g =idyog = g.
Hence g,g~! € (Gf<g). Since for each x € X, we have f, = (fmog) og~ ! and fyogis a gen-
erator of Gf(g), it follows that f, € Gf(g) for all z € X. Hence Gy = <fw tx € X> C Gf<g).
This means that any Gy-valued coboundary map is also G f()-valued, and so Fg, C f@f(g)

This proves (i). To prove (ii), take by hypothesis g ¢ G¢. In this case, G ¢ Gy. Define
[+ (z,y) — g(y) and note since g € Gy it is a Gy-valued coboundary map. Since

g ¢ Gy we have f ¢ Fi,; and so .F((;f(g) ¢ Fg,;. Combining with (i) completes the proof. B

50



COUNTERFACTUAL COCYCLES

Appendix B. Algorithms

Data: samples {(z(),y@)}7_
cocycle Ty, kernel k, batch size
B, epochs E, step-size

Result: Optimized cocycle Ty

for epoch =1,...,E do

54+ 0; // samples counter

while s <n do
Sample without replacement a

set BCA{l,...,n}, |B|=B
forall ¢,j € B do

‘ Y, i) Ty o) o (YD)
end
0 (0) «

s Ligues k(Y Y30
7 Yijesk(y?, v5):
6 — 0—nVoll (0):
s <« s+ B;
end

end
return T;

Algorithm 1: Minibatch CMMD-V opti-

mization.
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